| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chscl.1 | 
							 |-  ( ph -> A e. CH )  | 
						
						
							| 2 | 
							
								
							 | 
							chscl.2 | 
							 |-  ( ph -> B e. CH )  | 
						
						
							| 3 | 
							
								
							 | 
							chscl.3 | 
							 |-  ( ph -> B C_ ( _|_ ` A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							chsh | 
							 |-  ( A e. CH -> A e. SH )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							syl | 
							 |-  ( ph -> A e. SH )  | 
						
						
							| 6 | 
							
								
							 | 
							chsh | 
							 |-  ( B e. CH -> B e. SH )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							syl | 
							 |-  ( ph -> B e. SH )  | 
						
						
							| 8 | 
							
								
							 | 
							shscl | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( A +H B ) e. SH )  | 
						
						
							| 9 | 
							
								5 7 8
							 | 
							syl2anc | 
							 |-  ( ph -> ( A +H B ) e. SH )  | 
						
						
							| 10 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> A e. CH )  | 
						
						
							| 11 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> B e. CH )  | 
						
						
							| 12 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> B C_ ( _|_ ` A ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> f : NN --> ( A +H B ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> f ~~>v z )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. NN |-> ( ( projh ` A ) ` ( f ` x ) ) ) = ( x e. NN |-> ( ( projh ` A ) ` ( f ` x ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. NN |-> ( ( projh ` B ) ` ( f ` x ) ) ) = ( x e. NN |-> ( ( projh ` B ) ` ( f ` x ) ) )  | 
						
						
							| 17 | 
							
								10 11 12 13 14 15 16
							 | 
							chscllem4 | 
							 |-  ( ( ph /\ ( f : NN --> ( A +H B ) /\ f ~~>v z ) ) -> z e. ( A +H B ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							 |-  ( ph -> ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							alrimivv | 
							 |-  ( ph -> A. f A. z ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							isch2 | 
							 |-  ( ( A +H B ) e. CH <-> ( ( A +H B ) e. SH /\ A. f A. z ( ( f : NN --> ( A +H B ) /\ f ~~>v z ) -> z e. ( A +H B ) ) ) )  | 
						
						
							| 21 | 
							
								9 19 20
							 | 
							sylanbrc | 
							 |-  ( ph -> ( A +H B ) e. CH )  |