Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
|- ( ph -> A e. CH ) |
2 |
|
chscl.2 |
|- ( ph -> B e. CH ) |
3 |
|
chscl.3 |
|- ( ph -> B C_ ( _|_ ` A ) ) |
4 |
|
chscl.4 |
|- ( ph -> H : NN --> ( A +H B ) ) |
5 |
|
chscl.5 |
|- ( ph -> H ~~>v u ) |
6 |
|
chscl.6 |
|- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
7 |
|
eqid |
|- ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` n ) ) |
8 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. CH ) |
9 |
4
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( H ` n ) e. ( A +H B ) ) |
10 |
|
chsh |
|- ( B e. CH -> B e. SH ) |
11 |
2 10
|
syl |
|- ( ph -> B e. SH ) |
12 |
|
chsh |
|- ( A e. CH -> A e. SH ) |
13 |
1 12
|
syl |
|- ( ph -> A e. SH ) |
14 |
|
shocsh |
|- ( A e. SH -> ( _|_ ` A ) e. SH ) |
15 |
13 14
|
syl |
|- ( ph -> ( _|_ ` A ) e. SH ) |
16 |
|
shless |
|- ( ( ( B e. SH /\ ( _|_ ` A ) e. SH /\ A e. SH ) /\ B C_ ( _|_ ` A ) ) -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
17 |
11 15 13 3 16
|
syl31anc |
|- ( ph -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
18 |
|
shscom |
|- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) |
19 |
13 11 18
|
syl2anc |
|- ( ph -> ( A +H B ) = ( B +H A ) ) |
20 |
|
shscom |
|- ( ( A e. SH /\ ( _|_ ` A ) e. SH ) -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
21 |
13 15 20
|
syl2anc |
|- ( ph -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
22 |
17 19 21
|
3sstr4d |
|- ( ph -> ( A +H B ) C_ ( A +H ( _|_ ` A ) ) ) |
23 |
22
|
sselda |
|- ( ( ph /\ ( H ` n ) e. ( A +H B ) ) -> ( H ` n ) e. ( A +H ( _|_ ` A ) ) ) |
24 |
9 23
|
syldan |
|- ( ( ph /\ n e. NN ) -> ( H ` n ) e. ( A +H ( _|_ ` A ) ) ) |
25 |
|
pjpreeq |
|- ( ( A e. CH /\ ( H ` n ) e. ( A +H ( _|_ ` A ) ) ) -> ( ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` n ) ) <-> ( ( ( projh ` A ) ` ( H ` n ) ) e. A /\ E. x e. ( _|_ ` A ) ( H ` n ) = ( ( ( projh ` A ) ` ( H ` n ) ) +h x ) ) ) ) |
26 |
8 24 25
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` n ) ) <-> ( ( ( projh ` A ) ` ( H ` n ) ) e. A /\ E. x e. ( _|_ ` A ) ( H ` n ) = ( ( ( projh ` A ) ` ( H ` n ) ) +h x ) ) ) ) |
27 |
7 26
|
mpbii |
|- ( ( ph /\ n e. NN ) -> ( ( ( projh ` A ) ` ( H ` n ) ) e. A /\ E. x e. ( _|_ ` A ) ( H ` n ) = ( ( ( projh ` A ) ` ( H ` n ) ) +h x ) ) ) |
28 |
27
|
simpld |
|- ( ( ph /\ n e. NN ) -> ( ( projh ` A ) ` ( H ` n ) ) e. A ) |
29 |
28 6
|
fmptd |
|- ( ph -> F : NN --> A ) |