Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
|- ( ph -> A e. CH ) |
2 |
|
chscl.2 |
|- ( ph -> B e. CH ) |
3 |
|
chscl.3 |
|- ( ph -> B C_ ( _|_ ` A ) ) |
4 |
|
chscl.4 |
|- ( ph -> H : NN --> ( A +H B ) ) |
5 |
|
chscl.5 |
|- ( ph -> H ~~>v u ) |
6 |
|
chscl.6 |
|- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
7 |
|
chscllem3.7 |
|- ( ph -> N e. NN ) |
8 |
|
chscllem3.8 |
|- ( ph -> C e. A ) |
9 |
|
chscllem3.9 |
|- ( ph -> D e. B ) |
10 |
|
chscllem3.10 |
|- ( ph -> ( H ` N ) = ( C +h D ) ) |
11 |
|
2fveq3 |
|- ( n = N -> ( ( projh ` A ) ` ( H ` n ) ) = ( ( projh ` A ) ` ( H ` N ) ) ) |
12 |
|
fvex |
|- ( ( projh ` A ) ` ( H ` N ) ) e. _V |
13 |
11 6 12
|
fvmpt |
|- ( N e. NN -> ( F ` N ) = ( ( projh ` A ) ` ( H ` N ) ) ) |
14 |
7 13
|
syl |
|- ( ph -> ( F ` N ) = ( ( projh ` A ) ` ( H ` N ) ) ) |
15 |
14
|
eqcomd |
|- ( ph -> ( ( projh ` A ) ` ( H ` N ) ) = ( F ` N ) ) |
16 |
|
chsh |
|- ( B e. CH -> B e. SH ) |
17 |
2 16
|
syl |
|- ( ph -> B e. SH ) |
18 |
|
chsh |
|- ( A e. CH -> A e. SH ) |
19 |
1 18
|
syl |
|- ( ph -> A e. SH ) |
20 |
|
shocsh |
|- ( A e. SH -> ( _|_ ` A ) e. SH ) |
21 |
19 20
|
syl |
|- ( ph -> ( _|_ ` A ) e. SH ) |
22 |
|
shless |
|- ( ( ( B e. SH /\ ( _|_ ` A ) e. SH /\ A e. SH ) /\ B C_ ( _|_ ` A ) ) -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
23 |
17 21 19 3 22
|
syl31anc |
|- ( ph -> ( B +H A ) C_ ( ( _|_ ` A ) +H A ) ) |
24 |
|
shscom |
|- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) |
25 |
19 17 24
|
syl2anc |
|- ( ph -> ( A +H B ) = ( B +H A ) ) |
26 |
|
shscom |
|- ( ( A e. SH /\ ( _|_ ` A ) e. SH ) -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
27 |
19 21 26
|
syl2anc |
|- ( ph -> ( A +H ( _|_ ` A ) ) = ( ( _|_ ` A ) +H A ) ) |
28 |
23 25 27
|
3sstr4d |
|- ( ph -> ( A +H B ) C_ ( A +H ( _|_ ` A ) ) ) |
29 |
4 7
|
ffvelrnd |
|- ( ph -> ( H ` N ) e. ( A +H B ) ) |
30 |
28 29
|
sseldd |
|- ( ph -> ( H ` N ) e. ( A +H ( _|_ ` A ) ) ) |
31 |
|
pjpreeq |
|- ( ( A e. CH /\ ( H ` N ) e. ( A +H ( _|_ ` A ) ) ) -> ( ( ( projh ` A ) ` ( H ` N ) ) = ( F ` N ) <-> ( ( F ` N ) e. A /\ E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) ) ) |
32 |
1 30 31
|
syl2anc |
|- ( ph -> ( ( ( projh ` A ) ` ( H ` N ) ) = ( F ` N ) <-> ( ( F ` N ) e. A /\ E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) ) ) |
33 |
15 32
|
mpbid |
|- ( ph -> ( ( F ` N ) e. A /\ E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) ) |
34 |
33
|
simprd |
|- ( ph -> E. z e. ( _|_ ` A ) ( H ` N ) = ( ( F ` N ) +h z ) ) |
35 |
19
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> A e. SH ) |
36 |
21
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( _|_ ` A ) e. SH ) |
37 |
|
ocin |
|- ( A e. SH -> ( A i^i ( _|_ ` A ) ) = 0H ) |
38 |
19 37
|
syl |
|- ( ph -> ( A i^i ( _|_ ` A ) ) = 0H ) |
39 |
38
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( A i^i ( _|_ ` A ) ) = 0H ) |
40 |
8
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> C e. A ) |
41 |
3
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> B C_ ( _|_ ` A ) ) |
42 |
9
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> D e. B ) |
43 |
41 42
|
sseldd |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> D e. ( _|_ ` A ) ) |
44 |
1 2 3 4 5 6
|
chscllem1 |
|- ( ph -> F : NN --> A ) |
45 |
44 7
|
ffvelrnd |
|- ( ph -> ( F ` N ) e. A ) |
46 |
45
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( F ` N ) e. A ) |
47 |
|
simprl |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> z e. ( _|_ ` A ) ) |
48 |
10
|
adantr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( H ` N ) = ( C +h D ) ) |
49 |
|
simprr |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( H ` N ) = ( ( F ` N ) +h z ) ) |
50 |
48 49
|
eqtr3d |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( C +h D ) = ( ( F ` N ) +h z ) ) |
51 |
35 36 39 40 43 46 47 50
|
shuni |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> ( C = ( F ` N ) /\ D = z ) ) |
52 |
51
|
simpld |
|- ( ( ph /\ ( z e. ( _|_ ` A ) /\ ( H ` N ) = ( ( F ` N ) +h z ) ) ) -> C = ( F ` N ) ) |
53 |
34 52
|
rexlimddv |
|- ( ph -> C = ( F ` N ) ) |