| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chscl.1 | 
							 |-  ( ph -> A e. CH )  | 
						
						
							| 2 | 
							
								
							 | 
							chscl.2 | 
							 |-  ( ph -> B e. CH )  | 
						
						
							| 3 | 
							
								
							 | 
							chscl.3 | 
							 |-  ( ph -> B C_ ( _|_ ` A ) )  | 
						
						
							| 4 | 
							
								
							 | 
							chscl.4 | 
							 |-  ( ph -> H : NN --> ( A +H B ) )  | 
						
						
							| 5 | 
							
								
							 | 
							chscl.5 | 
							 |-  ( ph -> H ~~>v u )  | 
						
						
							| 6 | 
							
								
							 | 
							chscl.6 | 
							 |-  F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							chscl.7 | 
							 |-  G = ( n e. NN |-> ( ( projh ` B ) ` ( H ` n ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							hlimf | 
							 |-  ~~>v : dom ~~>v --> ~H  | 
						
						
							| 9 | 
							
								
							 | 
							ffun | 
							 |-  ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							 |-  Fun ~~>v  | 
						
						
							| 11 | 
							
								
							 | 
							funbrfv | 
							 |-  ( Fun ~~>v -> ( H ~~>v u -> ( ~~>v ` H ) = u ) )  | 
						
						
							| 12 | 
							
								10 5 11
							 | 
							mpsyl | 
							 |-  ( ph -> ( ~~>v ` H ) = u )  | 
						
						
							| 13 | 
							
								4
							 | 
							feqmptd | 
							 |-  ( ph -> H = ( k e. NN |-> ( H ` k ) ) )  | 
						
						
							| 14 | 
							
								4
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ k e. NN ) -> ( H ` k ) e. ( A +H B ) )  | 
						
						
							| 15 | 
							
								
							 | 
							chsh | 
							 |-  ( A e. CH -> A e. SH )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							syl | 
							 |-  ( ph -> A e. SH )  | 
						
						
							| 17 | 
							
								
							 | 
							chsh | 
							 |-  ( B e. CH -> B e. SH )  | 
						
						
							| 18 | 
							
								2 17
							 | 
							syl | 
							 |-  ( ph -> B e. SH )  | 
						
						
							| 19 | 
							
								
							 | 
							shsel | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( ( H ` k ) e. ( A +H B ) <-> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) )  | 
						
						
							| 20 | 
							
								16 18 19
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( H ` k ) e. ( A +H B ) <-> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							biimpa | 
							 |-  ( ( ph /\ ( H ` k ) e. ( A +H B ) ) -> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) )  | 
						
						
							| 22 | 
							
								14 21
							 | 
							syldan | 
							 |-  ( ( ph /\ k e. NN ) -> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( x +h y ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ph )  | 
						
						
							| 25 | 
							
								24 1
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A e. CH )  | 
						
						
							| 26 | 
							
								24 2
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B e. CH )  | 
						
						
							| 27 | 
							
								24 3
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B C_ ( _|_ ` A ) )  | 
						
						
							| 28 | 
							
								24 4
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H : NN --> ( A +H B ) )  | 
						
						
							| 29 | 
							
								24 5
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H ~~>v u )  | 
						
						
							| 30 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> k e. NN )  | 
						
						
							| 31 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x e. A )  | 
						
						
							| 32 | 
							
								
							 | 
							simp2r | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y e. B )  | 
						
						
							| 33 | 
							
								25 26 27 28 29 6 30 31 32 23
							 | 
							chscllem3 | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x = ( F ` k ) )  | 
						
						
							| 34 | 
							
								
							 | 
							chsscon2 | 
							 |-  ( ( B e. CH /\ A e. CH ) -> ( B C_ ( _|_ ` A ) <-> A C_ ( _|_ ` B ) ) )  | 
						
						
							| 35 | 
							
								2 1 34
							 | 
							syl2anc | 
							 |-  ( ph -> ( B C_ ( _|_ ` A ) <-> A C_ ( _|_ ` B ) ) )  | 
						
						
							| 36 | 
							
								3 35
							 | 
							mpbid | 
							 |-  ( ph -> A C_ ( _|_ ` B ) )  | 
						
						
							| 37 | 
							
								24 36
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A C_ ( _|_ ` B ) )  | 
						
						
							| 38 | 
							
								
							 | 
							shscom | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) )  | 
						
						
							| 39 | 
							
								16 18 38
							 | 
							syl2anc | 
							 |-  ( ph -> ( A +H B ) = ( B +H A ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							feq3d | 
							 |-  ( ph -> ( H : NN --> ( A +H B ) <-> H : NN --> ( B +H A ) ) )  | 
						
						
							| 41 | 
							
								4 40
							 | 
							mpbid | 
							 |-  ( ph -> H : NN --> ( B +H A ) )  | 
						
						
							| 42 | 
							
								24 41
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H : NN --> ( B +H A ) )  | 
						
						
							| 43 | 
							
								
							 | 
							shss | 
							 |-  ( A e. SH -> A C_ ~H )  | 
						
						
							| 44 | 
							
								16 43
							 | 
							syl | 
							 |-  ( ph -> A C_ ~H )  | 
						
						
							| 45 | 
							
								24 44
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A C_ ~H )  | 
						
						
							| 46 | 
							
								45 31
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x e. ~H )  | 
						
						
							| 47 | 
							
								
							 | 
							shss | 
							 |-  ( B e. SH -> B C_ ~H )  | 
						
						
							| 48 | 
							
								18 47
							 | 
							syl | 
							 |-  ( ph -> B C_ ~H )  | 
						
						
							| 49 | 
							
								24 48
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B C_ ~H )  | 
						
						
							| 50 | 
							
								49 32
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y e. ~H )  | 
						
						
							| 51 | 
							
								
							 | 
							ax-hvcom | 
							 |-  ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) = ( y +h x ) )  | 
						
						
							| 52 | 
							
								46 50 51
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( x +h y ) = ( y +h x ) )  | 
						
						
							| 53 | 
							
								23 52
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( y +h x ) )  | 
						
						
							| 54 | 
							
								26 25 37 42 29 7 30 32 31 53
							 | 
							chscllem3 | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y = ( G ` k ) )  | 
						
						
							| 55 | 
							
								33 54
							 | 
							oveq12d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( x +h y ) = ( ( F ` k ) +h ( G ` k ) ) )  | 
						
						
							| 56 | 
							
								23 55
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							3exp | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( x e. A /\ y e. B ) -> ( ( H ` k ) = ( x +h y ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							rexlimdvv | 
							 |-  ( ( ph /\ k e. NN ) -> ( E. x e. A E. y e. B ( H ` k ) = ( x +h y ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) )  | 
						
						
							| 59 | 
							
								22 58
							 | 
							mpd | 
							 |-  ( ( ph /\ k e. NN ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( k e. NN |-> ( H ` k ) ) = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) )  | 
						
						
							| 61 | 
							
								13 60
							 | 
							eqtrd | 
							 |-  ( ph -> H = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) )  | 
						
						
							| 62 | 
							
								1 2 3 4 5 6
							 | 
							chscllem1 | 
							 |-  ( ph -> F : NN --> A )  | 
						
						
							| 63 | 
							
								62 44
							 | 
							fssd | 
							 |-  ( ph -> F : NN --> ~H )  | 
						
						
							| 64 | 
							
								2 1 36 41 5 7
							 | 
							chscllem1 | 
							 |-  ( ph -> G : NN --> B )  | 
						
						
							| 65 | 
							
								64 48
							 | 
							fssd | 
							 |-  ( ph -> G : NN --> ~H )  | 
						
						
							| 66 | 
							
								1 2 3 4 5 6
							 | 
							chscllem2 | 
							 |-  ( ph -> F e. dom ~~>v )  | 
						
						
							| 67 | 
							
								
							 | 
							funfvbrb | 
							 |-  ( Fun ~~>v -> ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) )  | 
						
						
							| 68 | 
							
								10 67
							 | 
							ax-mp | 
							 |-  ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) )  | 
						
						
							| 69 | 
							
								66 68
							 | 
							sylib | 
							 |-  ( ph -> F ~~>v ( ~~>v ` F ) )  | 
						
						
							| 70 | 
							
								2 1 36 41 5 7
							 | 
							chscllem2 | 
							 |-  ( ph -> G e. dom ~~>v )  | 
						
						
							| 71 | 
							
								
							 | 
							funfvbrb | 
							 |-  ( Fun ~~>v -> ( G e. dom ~~>v <-> G ~~>v ( ~~>v ` G ) ) )  | 
						
						
							| 72 | 
							
								10 71
							 | 
							ax-mp | 
							 |-  ( G e. dom ~~>v <-> G ~~>v ( ~~>v ` G ) )  | 
						
						
							| 73 | 
							
								70 72
							 | 
							sylib | 
							 |-  ( ph -> G ~~>v ( ~~>v ` G ) )  | 
						
						
							| 74 | 
							
								
							 | 
							eqid | 
							 |-  ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) )  | 
						
						
							| 75 | 
							
								63 65 69 73 74
							 | 
							hlimadd | 
							 |-  ( ph -> ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) )  | 
						
						
							| 76 | 
							
								61 75
							 | 
							eqbrtrd | 
							 |-  ( ph -> H ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							funbrfv | 
							 |-  ( Fun ~~>v -> ( H ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) -> ( ~~>v ` H ) = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) )  | 
						
						
							| 78 | 
							
								10 76 77
							 | 
							mpsyl | 
							 |-  ( ph -> ( ~~>v ` H ) = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) )  | 
						
						
							| 79 | 
							
								12 78
							 | 
							eqtr3d | 
							 |-  ( ph -> u = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							fvex | 
							 |-  ( ~~>v ` F ) e. _V  | 
						
						
							| 81 | 
							
								80
							 | 
							chlimi | 
							 |-  ( ( A e. CH /\ F : NN --> A /\ F ~~>v ( ~~>v ` F ) ) -> ( ~~>v ` F ) e. A )  | 
						
						
							| 82 | 
							
								1 62 69 81
							 | 
							syl3anc | 
							 |-  ( ph -> ( ~~>v ` F ) e. A )  | 
						
						
							| 83 | 
							
								
							 | 
							fvex | 
							 |-  ( ~~>v ` G ) e. _V  | 
						
						
							| 84 | 
							
								83
							 | 
							chlimi | 
							 |-  ( ( B e. CH /\ G : NN --> B /\ G ~~>v ( ~~>v ` G ) ) -> ( ~~>v ` G ) e. B )  | 
						
						
							| 85 | 
							
								2 64 73 84
							 | 
							syl3anc | 
							 |-  ( ph -> ( ~~>v ` G ) e. B )  | 
						
						
							| 86 | 
							
								
							 | 
							shsva | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( ( ( ~~>v ` F ) e. A /\ ( ~~>v ` G ) e. B ) -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) )  | 
						
						
							| 87 | 
							
								16 18 86
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( ( ~~>v ` F ) e. A /\ ( ~~>v ` G ) e. B ) -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) )  | 
						
						
							| 88 | 
							
								82 85 87
							 | 
							mp2and | 
							 |-  ( ph -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) )  | 
						
						
							| 89 | 
							
								79 88
							 | 
							eqeltrd | 
							 |-  ( ph -> u e. ( A +H B ) )  |