Step |
Hyp |
Ref |
Expression |
1 |
|
chscl.1 |
|- ( ph -> A e. CH ) |
2 |
|
chscl.2 |
|- ( ph -> B e. CH ) |
3 |
|
chscl.3 |
|- ( ph -> B C_ ( _|_ ` A ) ) |
4 |
|
chscl.4 |
|- ( ph -> H : NN --> ( A +H B ) ) |
5 |
|
chscl.5 |
|- ( ph -> H ~~>v u ) |
6 |
|
chscl.6 |
|- F = ( n e. NN |-> ( ( projh ` A ) ` ( H ` n ) ) ) |
7 |
|
chscl.7 |
|- G = ( n e. NN |-> ( ( projh ` B ) ` ( H ` n ) ) ) |
8 |
|
hlimf |
|- ~~>v : dom ~~>v --> ~H |
9 |
|
ffun |
|- ( ~~>v : dom ~~>v --> ~H -> Fun ~~>v ) |
10 |
8 9
|
ax-mp |
|- Fun ~~>v |
11 |
|
funbrfv |
|- ( Fun ~~>v -> ( H ~~>v u -> ( ~~>v ` H ) = u ) ) |
12 |
10 5 11
|
mpsyl |
|- ( ph -> ( ~~>v ` H ) = u ) |
13 |
4
|
feqmptd |
|- ( ph -> H = ( k e. NN |-> ( H ` k ) ) ) |
14 |
4
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( H ` k ) e. ( A +H B ) ) |
15 |
|
chsh |
|- ( A e. CH -> A e. SH ) |
16 |
1 15
|
syl |
|- ( ph -> A e. SH ) |
17 |
|
chsh |
|- ( B e. CH -> B e. SH ) |
18 |
2 17
|
syl |
|- ( ph -> B e. SH ) |
19 |
|
shsel |
|- ( ( A e. SH /\ B e. SH ) -> ( ( H ` k ) e. ( A +H B ) <-> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) ) |
20 |
16 18 19
|
syl2anc |
|- ( ph -> ( ( H ` k ) e. ( A +H B ) <-> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) ) |
21 |
20
|
biimpa |
|- ( ( ph /\ ( H ` k ) e. ( A +H B ) ) -> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) |
22 |
14 21
|
syldan |
|- ( ( ph /\ k e. NN ) -> E. x e. A E. y e. B ( H ` k ) = ( x +h y ) ) |
23 |
|
simp3 |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( x +h y ) ) |
24 |
|
simp1l |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ph ) |
25 |
24 1
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A e. CH ) |
26 |
24 2
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B e. CH ) |
27 |
24 3
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B C_ ( _|_ ` A ) ) |
28 |
24 4
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H : NN --> ( A +H B ) ) |
29 |
24 5
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H ~~>v u ) |
30 |
|
simp1r |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> k e. NN ) |
31 |
|
simp2l |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x e. A ) |
32 |
|
simp2r |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y e. B ) |
33 |
25 26 27 28 29 6 30 31 32 23
|
chscllem3 |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x = ( F ` k ) ) |
34 |
|
chsscon2 |
|- ( ( B e. CH /\ A e. CH ) -> ( B C_ ( _|_ ` A ) <-> A C_ ( _|_ ` B ) ) ) |
35 |
2 1 34
|
syl2anc |
|- ( ph -> ( B C_ ( _|_ ` A ) <-> A C_ ( _|_ ` B ) ) ) |
36 |
3 35
|
mpbid |
|- ( ph -> A C_ ( _|_ ` B ) ) |
37 |
24 36
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A C_ ( _|_ ` B ) ) |
38 |
|
shscom |
|- ( ( A e. SH /\ B e. SH ) -> ( A +H B ) = ( B +H A ) ) |
39 |
16 18 38
|
syl2anc |
|- ( ph -> ( A +H B ) = ( B +H A ) ) |
40 |
39
|
feq3d |
|- ( ph -> ( H : NN --> ( A +H B ) <-> H : NN --> ( B +H A ) ) ) |
41 |
4 40
|
mpbid |
|- ( ph -> H : NN --> ( B +H A ) ) |
42 |
24 41
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> H : NN --> ( B +H A ) ) |
43 |
|
shss |
|- ( A e. SH -> A C_ ~H ) |
44 |
16 43
|
syl |
|- ( ph -> A C_ ~H ) |
45 |
24 44
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> A C_ ~H ) |
46 |
45 31
|
sseldd |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> x e. ~H ) |
47 |
|
shss |
|- ( B e. SH -> B C_ ~H ) |
48 |
18 47
|
syl |
|- ( ph -> B C_ ~H ) |
49 |
24 48
|
syl |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> B C_ ~H ) |
50 |
49 32
|
sseldd |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y e. ~H ) |
51 |
|
ax-hvcom |
|- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) = ( y +h x ) ) |
52 |
46 50 51
|
syl2anc |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( x +h y ) = ( y +h x ) ) |
53 |
23 52
|
eqtrd |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( y +h x ) ) |
54 |
26 25 37 42 29 7 30 32 31 53
|
chscllem3 |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> y = ( G ` k ) ) |
55 |
33 54
|
oveq12d |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( x +h y ) = ( ( F ` k ) +h ( G ` k ) ) ) |
56 |
23 55
|
eqtrd |
|- ( ( ( ph /\ k e. NN ) /\ ( x e. A /\ y e. B ) /\ ( H ` k ) = ( x +h y ) ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) |
57 |
56
|
3exp |
|- ( ( ph /\ k e. NN ) -> ( ( x e. A /\ y e. B ) -> ( ( H ` k ) = ( x +h y ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) ) ) |
58 |
57
|
rexlimdvv |
|- ( ( ph /\ k e. NN ) -> ( E. x e. A E. y e. B ( H ` k ) = ( x +h y ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) ) |
59 |
22 58
|
mpd |
|- ( ( ph /\ k e. NN ) -> ( H ` k ) = ( ( F ` k ) +h ( G ` k ) ) ) |
60 |
59
|
mpteq2dva |
|- ( ph -> ( k e. NN |-> ( H ` k ) ) = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) ) |
61 |
13 60
|
eqtrd |
|- ( ph -> H = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) ) |
62 |
1 2 3 4 5 6
|
chscllem1 |
|- ( ph -> F : NN --> A ) |
63 |
62 44
|
fssd |
|- ( ph -> F : NN --> ~H ) |
64 |
2 1 36 41 5 7
|
chscllem1 |
|- ( ph -> G : NN --> B ) |
65 |
64 48
|
fssd |
|- ( ph -> G : NN --> ~H ) |
66 |
1 2 3 4 5 6
|
chscllem2 |
|- ( ph -> F e. dom ~~>v ) |
67 |
|
funfvbrb |
|- ( Fun ~~>v -> ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) ) |
68 |
10 67
|
ax-mp |
|- ( F e. dom ~~>v <-> F ~~>v ( ~~>v ` F ) ) |
69 |
66 68
|
sylib |
|- ( ph -> F ~~>v ( ~~>v ` F ) ) |
70 |
2 1 36 41 5 7
|
chscllem2 |
|- ( ph -> G e. dom ~~>v ) |
71 |
|
funfvbrb |
|- ( Fun ~~>v -> ( G e. dom ~~>v <-> G ~~>v ( ~~>v ` G ) ) ) |
72 |
10 71
|
ax-mp |
|- ( G e. dom ~~>v <-> G ~~>v ( ~~>v ` G ) ) |
73 |
70 72
|
sylib |
|- ( ph -> G ~~>v ( ~~>v ` G ) ) |
74 |
|
eqid |
|- ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) = ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) |
75 |
63 65 69 73 74
|
hlimadd |
|- ( ph -> ( k e. NN |-> ( ( F ` k ) +h ( G ` k ) ) ) ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
76 |
61 75
|
eqbrtrd |
|- ( ph -> H ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
77 |
|
funbrfv |
|- ( Fun ~~>v -> ( H ~~>v ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) -> ( ~~>v ` H ) = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) ) |
78 |
10 76 77
|
mpsyl |
|- ( ph -> ( ~~>v ` H ) = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
79 |
12 78
|
eqtr3d |
|- ( ph -> u = ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) ) |
80 |
|
fvex |
|- ( ~~>v ` F ) e. _V |
81 |
80
|
chlimi |
|- ( ( A e. CH /\ F : NN --> A /\ F ~~>v ( ~~>v ` F ) ) -> ( ~~>v ` F ) e. A ) |
82 |
1 62 69 81
|
syl3anc |
|- ( ph -> ( ~~>v ` F ) e. A ) |
83 |
|
fvex |
|- ( ~~>v ` G ) e. _V |
84 |
83
|
chlimi |
|- ( ( B e. CH /\ G : NN --> B /\ G ~~>v ( ~~>v ` G ) ) -> ( ~~>v ` G ) e. B ) |
85 |
2 64 73 84
|
syl3anc |
|- ( ph -> ( ~~>v ` G ) e. B ) |
86 |
|
shsva |
|- ( ( A e. SH /\ B e. SH ) -> ( ( ( ~~>v ` F ) e. A /\ ( ~~>v ` G ) e. B ) -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) ) |
87 |
16 18 86
|
syl2anc |
|- ( ph -> ( ( ( ~~>v ` F ) e. A /\ ( ~~>v ` G ) e. B ) -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) ) |
88 |
82 85 87
|
mp2and |
|- ( ph -> ( ( ~~>v ` F ) +h ( ~~>v ` G ) ) e. ( A +H B ) ) |
89 |
79 88
|
eqeltrd |
|- ( ph -> u e. ( A +H B ) ) |