Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chsh | |- ( H e. CH -> H e. SH ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch | |- ( H e. CH <-> ( H e. SH /\ ( ~~>v " ( H ^m NN ) ) C_ H ) ) |
|
2 | 1 | simplbi | |- ( H e. CH -> H e. SH ) |