Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chshi.1 | |- H e. CH |
|
| Assertion | chshii | |- H e. SH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chshi.1 | |- H e. CH |
|
| 2 | chsh | |- ( H e. CH -> H e. SH ) |
|
| 3 | 1 2 | ax-mp | |- H e. SH |