Metamath Proof Explorer


Theorem chsscon1i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chsscon1i
|- ( ( _|_ ` A ) C_ B <-> ( _|_ ` B ) C_ A )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 1 choccli
 |-  ( _|_ ` A ) e. CH
4 3 2 chsscon3i
 |-  ( ( _|_ ` A ) C_ B <-> ( _|_ ` B ) C_ ( _|_ ` ( _|_ ` A ) ) )
5 1 pjococi
 |-  ( _|_ ` ( _|_ ` A ) ) = A
6 5 sseq2i
 |-  ( ( _|_ ` B ) C_ ( _|_ ` ( _|_ ` A ) ) <-> ( _|_ ` B ) C_ A )
7 4 6 bitri
 |-  ( ( _|_ ` A ) C_ B <-> ( _|_ ` B ) C_ A )