Description: Hilbert lattice contraposition law. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chsscon2 | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chss | |- ( A e. CH -> A C_ ~H ) |
|
2 | chss | |- ( B e. CH -> B C_ ~H ) |
|
3 | occon3 | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) ) |
|
4 | 1 2 3 | syl2an | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) ) |