Metamath Proof Explorer


Theorem chsscon2i

Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chsscon2i
|- ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 1 chssii
 |-  A C_ ~H
4 2 chssii
 |-  B C_ ~H
5 occon3
 |-  ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) )
6 3 4 5 mp2an
 |-  ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) )