| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ch0le.1 |
|- A e. CH |
| 2 |
|
chjcl.2 |
|- B e. CH |
| 3 |
1
|
chssii |
|- A C_ ~H |
| 4 |
2
|
chssii |
|- B C_ ~H |
| 5 |
|
occon |
|- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |
| 6 |
3 4 5
|
mp2an |
|- ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) |
| 7 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 8 |
7
|
chssii |
|- ( _|_ ` B ) C_ ~H |
| 9 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 10 |
9
|
chssii |
|- ( _|_ ` A ) C_ ~H |
| 11 |
|
occon |
|- ( ( ( _|_ ` B ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) ) |
| 12 |
8 10 11
|
mp2an |
|- ( ( _|_ ` B ) C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` B ) ) ) |
| 13 |
1
|
pjococi |
|- ( _|_ ` ( _|_ ` A ) ) = A |
| 14 |
2
|
pjococi |
|- ( _|_ ` ( _|_ ` B ) ) = B |
| 15 |
12 13 14
|
3sstr3g |
|- ( ( _|_ ` B ) C_ ( _|_ ` A ) -> A C_ B ) |
| 16 |
6 15
|
impbii |
|- ( A C_ B <-> ( _|_ ` B ) C_ ( _|_ ` A ) ) |