| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inidm |
|- ( A i^i A ) = A |
| 2 |
|
sslin |
|- ( A C_ ( _|_ ` A ) -> ( A i^i A ) C_ ( A i^i ( _|_ ` A ) ) ) |
| 3 |
1 2
|
eqsstrrid |
|- ( A C_ ( _|_ ` A ) -> A C_ ( A i^i ( _|_ ` A ) ) ) |
| 4 |
|
chocin |
|- ( A e. CH -> ( A i^i ( _|_ ` A ) ) = 0H ) |
| 5 |
4
|
sseq2d |
|- ( A e. CH -> ( A C_ ( A i^i ( _|_ ` A ) ) <-> A C_ 0H ) ) |
| 6 |
|
chle0 |
|- ( A e. CH -> ( A C_ 0H <-> A = 0H ) ) |
| 7 |
5 6
|
bitrd |
|- ( A e. CH -> ( A C_ ( A i^i ( _|_ ` A ) ) <-> A = 0H ) ) |
| 8 |
3 7
|
imbitrid |
|- ( A e. CH -> ( A C_ ( _|_ ` A ) -> A = 0H ) ) |
| 9 |
|
simpr |
|- ( ( A e. CH /\ A = 0H ) -> A = 0H ) |
| 10 |
|
choccl |
|- ( A e. CH -> ( _|_ ` A ) e. CH ) |
| 11 |
|
ch0le |
|- ( ( _|_ ` A ) e. CH -> 0H C_ ( _|_ ` A ) ) |
| 12 |
10 11
|
syl |
|- ( A e. CH -> 0H C_ ( _|_ ` A ) ) |
| 13 |
12
|
adantr |
|- ( ( A e. CH /\ A = 0H ) -> 0H C_ ( _|_ ` A ) ) |
| 14 |
9 13
|
eqsstrd |
|- ( ( A e. CH /\ A = 0H ) -> A C_ ( _|_ ` A ) ) |
| 15 |
14
|
ex |
|- ( A e. CH -> ( A = 0H -> A C_ ( _|_ ` A ) ) ) |
| 16 |
8 15
|
impbid |
|- ( A e. CH -> ( A C_ ( _|_ ` A ) <-> A = 0H ) ) |