| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ss |  |-  (/) C_ { 0H } | 
						
							| 2 |  | 0ss |  |-  (/) C_ CH | 
						
							| 3 |  | h0elch |  |-  0H e. CH | 
						
							| 4 |  | snssi |  |-  ( 0H e. CH -> { 0H } C_ CH ) | 
						
							| 5 | 3 4 | ax-mp |  |-  { 0H } C_ CH | 
						
							| 6 |  | chsupss |  |-  ( ( (/) C_ CH /\ { 0H } C_ CH ) -> ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) ) | 
						
							| 7 | 2 5 6 | mp2an |  |-  ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) | 
						
							| 8 | 1 7 | ax-mp |  |-  ( \/H ` (/) ) C_ ( \/H ` { 0H } ) | 
						
							| 9 |  | chsupsn |  |-  ( 0H e. CH -> ( \/H ` { 0H } ) = 0H ) | 
						
							| 10 | 3 9 | ax-mp |  |-  ( \/H ` { 0H } ) = 0H | 
						
							| 11 | 8 10 | sseqtri |  |-  ( \/H ` (/) ) C_ 0H | 
						
							| 12 |  | chsupcl |  |-  ( (/) C_ CH -> ( \/H ` (/) ) e. CH ) | 
						
							| 13 | 2 12 | ax-mp |  |-  ( \/H ` (/) ) e. CH | 
						
							| 14 | 13 | chle0i |  |-  ( ( \/H ` (/) ) C_ 0H <-> ( \/H ` (/) ) = 0H ) | 
						
							| 15 | 11 14 | mpbi |  |-  ( \/H ` (/) ) = 0H |