Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
|- (/) C_ { 0H } |
2 |
|
0ss |
|- (/) C_ CH |
3 |
|
h0elch |
|- 0H e. CH |
4 |
|
snssi |
|- ( 0H e. CH -> { 0H } C_ CH ) |
5 |
3 4
|
ax-mp |
|- { 0H } C_ CH |
6 |
|
chsupss |
|- ( ( (/) C_ CH /\ { 0H } C_ CH ) -> ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) ) |
7 |
2 5 6
|
mp2an |
|- ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) |
8 |
1 7
|
ax-mp |
|- ( \/H ` (/) ) C_ ( \/H ` { 0H } ) |
9 |
|
chsupsn |
|- ( 0H e. CH -> ( \/H ` { 0H } ) = 0H ) |
10 |
3 9
|
ax-mp |
|- ( \/H ` { 0H } ) = 0H |
11 |
8 10
|
sseqtri |
|- ( \/H ` (/) ) C_ 0H |
12 |
|
chsupcl |
|- ( (/) C_ CH -> ( \/H ` (/) ) e. CH ) |
13 |
2 12
|
ax-mp |
|- ( \/H ` (/) ) e. CH |
14 |
13
|
chle0i |
|- ( ( \/H ` (/) ) C_ 0H <-> ( \/H ` (/) ) = 0H ) |
15 |
11 14
|
mpbi |
|- ( \/H ` (/) ) = 0H |