Description: Closure of supremum of subset of CH . Definition of supremum in Proposition 1 of Kalmbach p. 65. Shows that CH is a complete lattice. Also part of Definition 3.4-1 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 10-Nov-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chsupcl | |- ( A C_ CH -> ( \/H ` A ) e. CH ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsspwh | |- CH C_ ~P ~H |
|
2 | sstr2 | |- ( A C_ CH -> ( CH C_ ~P ~H -> A C_ ~P ~H ) ) |
|
3 | 1 2 | mpi | |- ( A C_ CH -> A C_ ~P ~H ) |
4 | hsupcl | |- ( A C_ ~P ~H -> ( \/H ` A ) e. CH ) |
|
5 | 3 4 | syl | |- ( A C_ CH -> ( \/H ` A ) e. CH ) |