Description: Subset relation for supremum of subset of CH . (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chsupss | |- ( ( A C_ CH /\ B C_ CH ) -> ( A C_ B -> ( \/H ` A ) C_ ( \/H ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsspwh | |- CH C_ ~P ~H |
|
2 | sstr2 | |- ( A C_ CH -> ( CH C_ ~P ~H -> A C_ ~P ~H ) ) |
|
3 | 1 2 | mpi | |- ( A C_ CH -> A C_ ~P ~H ) |
4 | sstr2 | |- ( B C_ CH -> ( CH C_ ~P ~H -> B C_ ~P ~H ) ) |
|
5 | 1 4 | mpi | |- ( B C_ CH -> B C_ ~P ~H ) |
6 | hsupss | |- ( ( A C_ ~P ~H /\ B C_ ~P ~H ) -> ( A C_ B -> ( \/H ` A ) C_ ( \/H ` B ) ) ) |
|
7 | 3 5 6 | syl2an | |- ( ( A C_ CH /\ B C_ CH ) -> ( A C_ B -> ( \/H ` A ) C_ ( \/H ` B ) ) ) |