Description: The value of the supremum of a set of closed subspaces of Hilbert space. Definition of supremum in Proposition 1 of Kalmbach p. 65. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupval2 | |- ( A C_ CH -> ( \/H ` A ) = |^| { x e. CH | U. A C_ x } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chsspwh | |- CH C_ ~P ~H | |
| 2 | sstr2 | |- ( A C_ CH -> ( CH C_ ~P ~H -> A C_ ~P ~H ) ) | |
| 3 | 1 2 | mpi | |- ( A C_ CH -> A C_ ~P ~H ) | 
| 4 | hsupval2 |  |-  ( A C_ ~P ~H -> ( \/H ` A ) = |^| { x e. CH | U. A C_ x } ) | |
| 5 | 3 4 | syl |  |-  ( A C_ CH -> ( \/H ` A ) = |^| { x e. CH | U. A C_ x } ) |