Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
lenlt |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 <_ A <-> -. A < 2 ) ) |
3 |
1 2
|
mpan |
|- ( A e. RR -> ( 2 <_ A <-> -. A < 2 ) ) |
4 |
|
chtrpcl |
|- ( ( A e. RR /\ 2 <_ A ) -> ( theta ` A ) e. RR+ ) |
5 |
4
|
rpne0d |
|- ( ( A e. RR /\ 2 <_ A ) -> ( theta ` A ) =/= 0 ) |
6 |
5
|
ex |
|- ( A e. RR -> ( 2 <_ A -> ( theta ` A ) =/= 0 ) ) |
7 |
3 6
|
sylbird |
|- ( A e. RR -> ( -. A < 2 -> ( theta ` A ) =/= 0 ) ) |
8 |
7
|
necon4bd |
|- ( A e. RR -> ( ( theta ` A ) = 0 -> A < 2 ) ) |
9 |
|
chtlepsi |
|- ( A e. RR -> ( theta ` A ) <_ ( psi ` A ) ) |
10 |
9
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( theta ` A ) <_ ( psi ` A ) ) |
11 |
|
chpeq0 |
|- ( A e. RR -> ( ( psi ` A ) = 0 <-> A < 2 ) ) |
12 |
11
|
biimpar |
|- ( ( A e. RR /\ A < 2 ) -> ( psi ` A ) = 0 ) |
13 |
10 12
|
breqtrd |
|- ( ( A e. RR /\ A < 2 ) -> ( theta ` A ) <_ 0 ) |
14 |
|
chtge0 |
|- ( A e. RR -> 0 <_ ( theta ` A ) ) |
15 |
14
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> 0 <_ ( theta ` A ) ) |
16 |
|
chtcl |
|- ( A e. RR -> ( theta ` A ) e. RR ) |
17 |
16
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( theta ` A ) e. RR ) |
18 |
|
0re |
|- 0 e. RR |
19 |
|
letri3 |
|- ( ( ( theta ` A ) e. RR /\ 0 e. RR ) -> ( ( theta ` A ) = 0 <-> ( ( theta ` A ) <_ 0 /\ 0 <_ ( theta ` A ) ) ) ) |
20 |
17 18 19
|
sylancl |
|- ( ( A e. RR /\ A < 2 ) -> ( ( theta ` A ) = 0 <-> ( ( theta ` A ) <_ 0 /\ 0 <_ ( theta ` A ) ) ) ) |
21 |
13 15 20
|
mpbir2and |
|- ( ( A e. RR /\ A < 2 ) -> ( theta ` A ) = 0 ) |
22 |
21
|
ex |
|- ( A e. RR -> ( A < 2 -> ( theta ` A ) = 0 ) ) |
23 |
8 22
|
impbid |
|- ( A e. RR -> ( ( theta ` A ) = 0 <-> A < 2 ) ) |