Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( A e. RR -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
2 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
3 |
2
|
adantl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
4 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
5 |
3 4
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) |
6 |
|
vmage0 |
|- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
7 |
3 6
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> 0 <_ ( Lam ` n ) ) |
8 |
|
ppisval |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
9 |
|
inss1 |
|- ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 2 ... ( |_ ` A ) ) |
10 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
11 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
12 |
10 11
|
mp1i |
|- ( A e. RR -> ( 2 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
13 |
9 12
|
sstrid |
|- ( A e. RR -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 1 ... ( |_ ` A ) ) ) |
14 |
8 13
|
eqsstrd |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) C_ ( 1 ... ( |_ ` A ) ) ) |
15 |
1 5 7 14
|
fsumless |
|- ( A e. RR -> sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( Lam ` n ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
16 |
|
chtval |
|- ( A e. RR -> ( theta ` A ) = sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( log ` n ) ) |
17 |
|
simpr |
|- ( ( A e. RR /\ n e. ( ( 0 [,] A ) i^i Prime ) ) -> n e. ( ( 0 [,] A ) i^i Prime ) ) |
18 |
17
|
elin2d |
|- ( ( A e. RR /\ n e. ( ( 0 [,] A ) i^i Prime ) ) -> n e. Prime ) |
19 |
|
vmaprm |
|- ( n e. Prime -> ( Lam ` n ) = ( log ` n ) ) |
20 |
18 19
|
syl |
|- ( ( A e. RR /\ n e. ( ( 0 [,] A ) i^i Prime ) ) -> ( Lam ` n ) = ( log ` n ) ) |
21 |
20
|
sumeq2dv |
|- ( A e. RR -> sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( Lam ` n ) = sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( log ` n ) ) |
22 |
16 21
|
eqtr4d |
|- ( A e. RR -> ( theta ` A ) = sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( Lam ` n ) ) |
23 |
|
chpval |
|- ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
24 |
15 22 23
|
3brtr4d |
|- ( A e. RR -> ( theta ` A ) <_ ( psi ` A ) ) |