Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
2 |
1
|
elin2d |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. Prime ) |
3 |
|
simprl |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> -. ( A + 1 ) e. Prime ) |
4 |
|
nelne2 |
|- ( ( x e. Prime /\ -. ( A + 1 ) e. Prime ) -> x =/= ( A + 1 ) ) |
5 |
2 3 4
|
syl2anc |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x =/= ( A + 1 ) ) |
6 |
|
velsn |
|- ( x e. { ( A + 1 ) } <-> x = ( A + 1 ) ) |
7 |
6
|
necon3bbii |
|- ( -. x e. { ( A + 1 ) } <-> x =/= ( A + 1 ) ) |
8 |
5 7
|
sylibr |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> -. x e. { ( A + 1 ) } ) |
9 |
1
|
elin1d |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( 2 ... ( A + 1 ) ) ) |
10 |
|
2z |
|- 2 e. ZZ |
11 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
12 |
11
|
adantr |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> A e. CC ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
pncan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
15 |
12 13 14
|
sylancl |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( ( A + 1 ) - 1 ) = A ) |
16 |
|
elfzuz2 |
|- ( x e. ( 2 ... ( A + 1 ) ) -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
17 |
|
uz2m1nn |
|- ( ( A + 1 ) e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) - 1 ) e. NN ) |
18 |
9 16 17
|
3syl |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( ( A + 1 ) - 1 ) e. NN ) |
19 |
15 18
|
eqeltrrd |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> A e. NN ) |
20 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
21 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
22 |
21
|
fveq2i |
|- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
23 |
20 22
|
eqtr4i |
|- NN = ( ZZ>= ` ( 2 - 1 ) ) |
24 |
19 23
|
eleqtrdi |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> A e. ( ZZ>= ` ( 2 - 1 ) ) ) |
25 |
|
fzsuc2 |
|- ( ( 2 e. ZZ /\ A e. ( ZZ>= ` ( 2 - 1 ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
26 |
10 24 25
|
sylancr |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
27 |
9 26
|
eleqtrd |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
28 |
|
elun |
|- ( x e. ( ( 2 ... A ) u. { ( A + 1 ) } ) <-> ( x e. ( 2 ... A ) \/ x e. { ( A + 1 ) } ) ) |
29 |
27 28
|
sylib |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( x e. ( 2 ... A ) \/ x e. { ( A + 1 ) } ) ) |
30 |
29
|
ord |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( -. x e. ( 2 ... A ) -> x e. { ( A + 1 ) } ) ) |
31 |
8 30
|
mt3d |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( 2 ... A ) ) |
32 |
31 2
|
elind |
|- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( ( 2 ... A ) i^i Prime ) ) |
33 |
32
|
expr |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) -> x e. ( ( 2 ... A ) i^i Prime ) ) ) |
34 |
33
|
ssrdv |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) C_ ( ( 2 ... A ) i^i Prime ) ) |
35 |
|
uzid |
|- ( A e. ZZ -> A e. ( ZZ>= ` A ) ) |
36 |
35
|
adantr |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> A e. ( ZZ>= ` A ) ) |
37 |
|
peano2uz |
|- ( A e. ( ZZ>= ` A ) -> ( A + 1 ) e. ( ZZ>= ` A ) ) |
38 |
|
fzss2 |
|- ( ( A + 1 ) e. ( ZZ>= ` A ) -> ( 2 ... A ) C_ ( 2 ... ( A + 1 ) ) ) |
39 |
|
ssrin |
|- ( ( 2 ... A ) C_ ( 2 ... ( A + 1 ) ) -> ( ( 2 ... A ) i^i Prime ) C_ ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
40 |
36 37 38 39
|
4syl |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... A ) i^i Prime ) C_ ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
41 |
34 40
|
eqssd |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
42 |
|
peano2z |
|- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
43 |
42
|
adantr |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ZZ ) |
44 |
|
flid |
|- ( ( A + 1 ) e. ZZ -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
45 |
43 44
|
syl |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
46 |
45
|
oveq2d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` ( A + 1 ) ) ) = ( 2 ... ( A + 1 ) ) ) |
47 |
46
|
ineq1d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) = ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
48 |
|
flid |
|- ( A e. ZZ -> ( |_ ` A ) = A ) |
49 |
48
|
adantr |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( |_ ` A ) = A ) |
50 |
49
|
oveq2d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` A ) ) = ( 2 ... A ) ) |
51 |
50
|
ineq1d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
52 |
41 47 51
|
3eqtr4d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
53 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
54 |
53
|
adantr |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> A e. RR ) |
55 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
56 |
|
ppisval |
|- ( ( A + 1 ) e. RR -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
57 |
54 55 56
|
3syl |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
58 |
|
ppisval |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
59 |
54 58
|
syl |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
60 |
52 57 59
|
3eqtr4d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 0 [,] A ) i^i Prime ) ) |
61 |
60
|
sumeq1d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
62 |
|
chtval |
|- ( ( A + 1 ) e. RR -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
63 |
54 55 62
|
3syl |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
64 |
|
chtval |
|- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
65 |
54 64
|
syl |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
66 |
61 63 65
|
3eqtr4d |
|- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = ( theta ` A ) ) |