Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
|- ( T. -> ( 2 [,) +oo ) e. _V ) |
2 |
|
2re |
|- 2 e. RR |
3 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
4 |
2 3
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
5 |
4
|
biimpi |
|- ( x e. ( 2 [,) +oo ) -> ( x e. RR /\ 2 <_ x ) ) |
6 |
5
|
simpld |
|- ( x e. ( 2 [,) +oo ) -> x e. RR ) |
7 |
|
0red |
|- ( x e. ( 2 [,) +oo ) -> 0 e. RR ) |
8 |
2
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 2 e. RR ) |
9 |
|
2pos |
|- 0 < 2 |
10 |
9
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 0 < 2 ) |
11 |
5
|
simprd |
|- ( x e. ( 2 [,) +oo ) -> 2 <_ x ) |
12 |
7 8 6 10 11
|
ltletrd |
|- ( x e. ( 2 [,) +oo ) -> 0 < x ) |
13 |
6 12
|
elrpd |
|- ( x e. ( 2 [,) +oo ) -> x e. RR+ ) |
14 |
|
ppinncl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( ppi ` x ) e. NN ) |
15 |
14
|
nnrpd |
|- ( ( x e. RR /\ 2 <_ x ) -> ( ppi ` x ) e. RR+ ) |
16 |
5 15
|
syl |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. RR+ ) |
17 |
|
1red |
|- ( x e. ( 2 [,) +oo ) -> 1 e. RR ) |
18 |
|
1lt2 |
|- 1 < 2 |
19 |
18
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 1 < 2 ) |
20 |
17 8 6 19 11
|
ltletrd |
|- ( x e. ( 2 [,) +oo ) -> 1 < x ) |
21 |
6 20
|
rplogcld |
|- ( x e. ( 2 [,) +oo ) -> ( log ` x ) e. RR+ ) |
22 |
16 21
|
rpmulcld |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. RR+ ) |
23 |
13 22
|
rpdivcld |
|- ( x e. ( 2 [,) +oo ) -> ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ ) |
24 |
23
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) e. CC ) |
25 |
24
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) e. CC ) |
26 |
|
chtrpcl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) |
27 |
5 26
|
syl |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. RR+ ) |
28 |
22 27
|
rpdivcld |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. RR+ ) |
29 |
28
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. CC ) |
30 |
29
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. CC ) |
31 |
6
|
recnd |
|- ( x e. ( 2 [,) +oo ) -> x e. CC ) |
32 |
21
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( log ` x ) e. CC ) |
33 |
16
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. CC ) |
34 |
21
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( log ` x ) =/= 0 ) |
35 |
16
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) =/= 0 ) |
36 |
31 32 33 34 35
|
divdiv1d |
|- ( x e. ( 2 [,) +oo ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) = ( x / ( ( log ` x ) x. ( ppi ` x ) ) ) ) |
37 |
32 33
|
mulcomd |
|- ( x e. ( 2 [,) +oo ) -> ( ( log ` x ) x. ( ppi ` x ) ) = ( ( ppi ` x ) x. ( log ` x ) ) ) |
38 |
37
|
oveq2d |
|- ( x e. ( 2 [,) +oo ) -> ( x / ( ( log ` x ) x. ( ppi ` x ) ) ) = ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) ) |
39 |
36 38
|
eqtrd |
|- ( x e. ( 2 [,) +oo ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) = ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) ) |
40 |
39
|
mpteq2ia |
|- ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) ) |
41 |
40
|
a1i |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) |
42 |
27
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. CC ) |
43 |
22
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. CC ) |
44 |
27
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) =/= 0 ) |
45 |
22
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( log ` x ) ) =/= 0 ) |
46 |
42 43 44 45
|
recdivd |
|- ( x e. ( 2 [,) +oo ) -> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
47 |
46
|
mpteq2ia |
|- ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
48 |
47
|
a1i |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
49 |
1 25 30 41 48
|
offval2 |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) ) |
50 |
31 43 42 45 44
|
dmdcan2d |
|- ( x e. ( 2 [,) +oo ) -> ( ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) = ( x / ( theta ` x ) ) ) |
51 |
50
|
mpteq2ia |
|- ( x e. ( 2 [,) +oo ) |-> ( ( x / ( ( ppi ` x ) x. ( log ` x ) ) ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) |
52 |
49 51
|
eqtrdi |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) ) |
53 |
|
chebbnd1 |
|- ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) e. O(1) |
54 |
|
ax-1cn |
|- 1 e. CC |
55 |
54
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 e. CC ) |
56 |
27 22
|
rpdivcld |
|- ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ ) |
57 |
56
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ ) |
58 |
57
|
rpcnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. CC ) |
59 |
6
|
ssriv |
|- ( 2 [,) +oo ) C_ RR |
60 |
|
rlimconst |
|- ( ( ( 2 [,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
61 |
59 54 60
|
mp2an |
|- ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 |
62 |
61
|
a1i |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
63 |
|
chtppilim |
|- ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1 |
64 |
63
|
a1i |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1 ) |
65 |
|
ax-1ne0 |
|- 1 =/= 0 |
66 |
65
|
a1i |
|- ( T. -> 1 =/= 0 ) |
67 |
56
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) =/= 0 ) |
68 |
67
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) =/= 0 ) |
69 |
55 58 62 64 66 68
|
rlimdiv |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ~~>r ( 1 / 1 ) ) |
70 |
|
rlimo1 |
|- ( ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ~~>r ( 1 / 1 ) -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) e. O(1) ) |
71 |
69 70
|
syl |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) e. O(1) ) |
72 |
|
o1mul |
|- ( ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) e. O(1) ) -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) e. O(1) ) |
73 |
53 71 72
|
sylancr |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) e. O(1) ) |
74 |
52 73
|
eqeltrrd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) e. O(1) ) |
75 |
74
|
mptru |
|- ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) e. O(1) |