Metamath Proof Explorer


Theorem chunssji

Description: Union is smaller than CH join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chunssji
|- ( A u. B ) C_ ( A vH B )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 1 chshii
 |-  A e. SH
4 2 chshii
 |-  B e. SH
5 3 4 shunssji
 |-  ( A u. B ) C_ ( A vH B )