Metamath Proof Explorer


Theorem chvarfv

Description: Implicit substitution of y for x into a theorem. Version of chvar with a disjoint variable condition, which does not require ax-13 . (Contributed by Raph Levien, 9-Jul-2003) (Revised by BJ, 31-May-2019)

Ref Expression
Hypotheses chvarfv.nf
|- F/ x ps
chvarfv.1
|- ( x = y -> ( ph <-> ps ) )
chvarfv.2
|- ph
Assertion chvarfv
|- ps

Proof

Step Hyp Ref Expression
1 chvarfv.nf
 |-  F/ x ps
2 chvarfv.1
 |-  ( x = y -> ( ph <-> ps ) )
3 chvarfv.2
 |-  ph
4 2 biimpd
 |-  ( x = y -> ( ph -> ps ) )
5 1 4 spimfv
 |-  ( A. x ph -> ps )
6 5 3 mpg
 |-  ps