Description: Objects X and Y in a category are isomorphic provided that there is an isomorphism f : X --> Y , see definition 3.15 of Adamek p. 29. (Contributed by AV, 4-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cic.i | |- I = ( Iso ` C ) | |
| cic.b | |- B = ( Base ` C ) | ||
| cic.c | |- ( ph -> C e. Cat ) | ||
| cic.x | |- ( ph -> X e. B ) | ||
| cic.y | |- ( ph -> Y e. B ) | ||
| Assertion | cic | |- ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X I Y ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cic.i | |- I = ( Iso ` C ) | |
| 2 | cic.b | |- B = ( Base ` C ) | |
| 3 | cic.c | |- ( ph -> C e. Cat ) | |
| 4 | cic.x | |- ( ph -> X e. B ) | |
| 5 | cic.y | |- ( ph -> Y e. B ) | |
| 6 | 1 2 3 4 5 | brcic | |- ( ph -> ( X ( ~=c ` C ) Y <-> ( X I Y ) =/= (/) ) ) | 
| 7 | n0 | |- ( ( X I Y ) =/= (/) <-> E. f f e. ( X I Y ) ) | |
| 8 | 6 7 | bitrdi | |- ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X I Y ) ) ) |