Step |
Hyp |
Ref |
Expression |
1 |
|
relopabv |
|- Rel { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } |
2 |
1
|
a1i |
|- ( C e. Cat -> Rel { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } ) |
3 |
|
fveq2 |
|- ( f = <. x , y >. -> ( ( Iso ` C ) ` f ) = ( ( Iso ` C ) ` <. x , y >. ) ) |
4 |
3
|
neeq1d |
|- ( f = <. x , y >. -> ( ( ( Iso ` C ) ` f ) =/= (/) <-> ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) ) |
5 |
4
|
rabxp |
|- { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } = { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } |
6 |
5
|
a1i |
|- ( C e. Cat -> { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } = { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } ) |
7 |
6
|
releqd |
|- ( C e. Cat -> ( Rel { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } <-> Rel { <. x , y >. | ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ ( ( Iso ` C ) ` <. x , y >. ) =/= (/) ) } ) ) |
8 |
2 7
|
mpbird |
|- ( C e. Cat -> Rel { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) |
9 |
|
isofn |
|- ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
10 |
|
fvex |
|- ( Base ` C ) e. _V |
11 |
|
sqxpexg |
|- ( ( Base ` C ) e. _V -> ( ( Base ` C ) X. ( Base ` C ) ) e. _V ) |
12 |
10 11
|
mp1i |
|- ( C e. Cat -> ( ( Base ` C ) X. ( Base ` C ) ) e. _V ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
13
|
a1i |
|- ( C e. Cat -> (/) e. _V ) |
15 |
|
suppvalfn |
|- ( ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Base ` C ) X. ( Base ` C ) ) e. _V /\ (/) e. _V ) -> ( ( Iso ` C ) supp (/) ) = { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) |
16 |
9 12 14 15
|
syl3anc |
|- ( C e. Cat -> ( ( Iso ` C ) supp (/) ) = { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) |
17 |
16
|
releqd |
|- ( C e. Cat -> ( Rel ( ( Iso ` C ) supp (/) ) <-> Rel { f e. ( ( Base ` C ) X. ( Base ` C ) ) | ( ( Iso ` C ) ` f ) =/= (/) } ) ) |
18 |
8 17
|
mpbird |
|- ( C e. Cat -> Rel ( ( Iso ` C ) supp (/) ) ) |
19 |
|
cicfval |
|- ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) |
20 |
19
|
releqd |
|- ( C e. Cat -> ( Rel ( ~=c ` C ) <-> Rel ( ( Iso ` C ) supp (/) ) ) ) |
21 |
18 20
|
mpbird |
|- ( C e. Cat -> Rel ( ~=c ` C ) ) |
22 |
|
cicsym |
|- ( ( C e. Cat /\ x ( ~=c ` C ) y ) -> y ( ~=c ` C ) x ) |
23 |
|
cictr |
|- ( ( C e. Cat /\ x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) -> x ( ~=c ` C ) z ) |
24 |
23
|
3expb |
|- ( ( C e. Cat /\ ( x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) ) -> x ( ~=c ` C ) z ) |
25 |
|
cicref |
|- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> x ( ~=c ` C ) x ) |
26 |
|
ciclcl |
|- ( ( C e. Cat /\ x ( ~=c ` C ) x ) -> x e. ( Base ` C ) ) |
27 |
25 26
|
impbida |
|- ( C e. Cat -> ( x e. ( Base ` C ) <-> x ( ~=c ` C ) x ) ) |
28 |
21 22 24 27
|
iserd |
|- ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) ) |