Metamath Proof Explorer


Theorem cicfval

Description: The set of isomorphic objects of the category c . (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion cicfval
|- ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) )

Proof

Step Hyp Ref Expression
1 df-cic
 |-  ~=c = ( c e. Cat |-> ( ( Iso ` c ) supp (/) ) )
2 fveq2
 |-  ( c = C -> ( Iso ` c ) = ( Iso ` C ) )
3 2 oveq1d
 |-  ( c = C -> ( ( Iso ` c ) supp (/) ) = ( ( Iso ` C ) supp (/) ) )
4 id
 |-  ( C e. Cat -> C e. Cat )
5 ovexd
 |-  ( C e. Cat -> ( ( Iso ` C ) supp (/) ) e. _V )
6 1 3 4 5 fvmptd3
 |-  ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) )