Description: The set of isomorphic objects of the category c . (Contributed by AV, 4-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cicfval | |- ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cic | |- ~=c = ( c e. Cat |-> ( ( Iso ` c ) supp (/) ) ) |
|
2 | fveq2 | |- ( c = C -> ( Iso ` c ) = ( Iso ` C ) ) |
|
3 | 2 | oveq1d | |- ( c = C -> ( ( Iso ` c ) supp (/) ) = ( ( Iso ` C ) supp (/) ) ) |
4 | id | |- ( C e. Cat -> C e. Cat ) |
|
5 | ovexd | |- ( C e. Cat -> ( ( Iso ` C ) supp (/) ) e. _V ) |
|
6 | 1 3 4 5 | fvmptd3 | |- ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) |