| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cicfval |  |-  ( C e. Cat -> ( ~=c ` C ) = ( ( Iso ` C ) supp (/) ) ) | 
						
							| 2 | 1 | breqd |  |-  ( C e. Cat -> ( R ( ~=c ` C ) S <-> R ( ( Iso ` C ) supp (/) ) S ) ) | 
						
							| 3 |  | isofn |  |-  ( C e. Cat -> ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) | 
						
							| 4 |  | fvexd |  |-  ( C e. Cat -> ( Iso ` C ) e. _V ) | 
						
							| 5 |  | 0ex |  |-  (/) e. _V | 
						
							| 6 | 5 | a1i |  |-  ( C e. Cat -> (/) e. _V ) | 
						
							| 7 |  | df-br |  |-  ( R ( ( Iso ` C ) supp (/) ) S <-> <. R , S >. e. ( ( Iso ` C ) supp (/) ) ) | 
						
							| 8 |  | elsuppfng |  |-  ( ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Iso ` C ) e. _V /\ (/) e. _V ) -> ( <. R , S >. e. ( ( Iso ` C ) supp (/) ) <-> ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) ) ) | 
						
							| 9 | 7 8 | bitrid |  |-  ( ( ( Iso ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Iso ` C ) e. _V /\ (/) e. _V ) -> ( R ( ( Iso ` C ) supp (/) ) S <-> ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) ) ) | 
						
							| 10 | 3 4 6 9 | syl3anc |  |-  ( C e. Cat -> ( R ( ( Iso ` C ) supp (/) ) S <-> ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) ) ) | 
						
							| 11 |  | opelxp1 |  |-  ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) -> R e. ( Base ` C ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( <. R , S >. e. ( ( Base ` C ) X. ( Base ` C ) ) /\ ( ( Iso ` C ) ` <. R , S >. ) =/= (/) ) -> R e. ( Base ` C ) ) | 
						
							| 13 | 10 12 | biimtrdi |  |-  ( C e. Cat -> ( R ( ( Iso ` C ) supp (/) ) S -> R e. ( Base ` C ) ) ) | 
						
							| 14 | 2 13 | sylbid |  |-  ( C e. Cat -> ( R ( ~=c ` C ) S -> R e. ( Base ` C ) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> R e. ( Base ` C ) ) |