Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicref | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> O ( ~=c ` C ) O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 3 | simpl | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> C e. Cat ) |
|
| 4 | simpr | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> O e. ( Base ` C ) ) |
|
| 5 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 6 | 2 5 3 4 | idiso | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> ( ( Id ` C ) ` O ) e. ( O ( Iso ` C ) O ) ) |
| 7 | 1 2 3 4 4 6 | brcici | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> O ( ~=c ` C ) O ) |