Step |
Hyp |
Ref |
Expression |
1 |
|
cicrcl |
|- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S e. ( Base ` C ) ) |
2 |
|
ciclcl |
|- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> R e. ( Base ` C ) ) |
3 |
|
eqid |
|- ( Iso ` C ) = ( Iso ` C ) |
4 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
5 |
|
simpl |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> C e. Cat ) |
6 |
|
simpr |
|- ( ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) -> R e. ( Base ` C ) ) |
7 |
6
|
adantl |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> R e. ( Base ` C ) ) |
8 |
|
simpl |
|- ( ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) -> S e. ( Base ` C ) ) |
9 |
8
|
adantl |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> S e. ( Base ` C ) ) |
10 |
3 4 5 7 9
|
cic |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( ~=c ` C ) S <-> E. f f e. ( R ( Iso ` C ) S ) ) ) |
11 |
|
eqid |
|- ( Inv ` C ) = ( Inv ` C ) |
12 |
4 11 5 7 9 3
|
isoval |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( Iso ` C ) S ) = dom ( R ( Inv ` C ) S ) ) |
13 |
4 11 5 9 7
|
invsym2 |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> `' ( S ( Inv ` C ) R ) = ( R ( Inv ` C ) S ) ) |
14 |
13
|
eqcomd |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( Inv ` C ) S ) = `' ( S ( Inv ` C ) R ) ) |
15 |
14
|
dmeqd |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> dom ( R ( Inv ` C ) S ) = dom `' ( S ( Inv ` C ) R ) ) |
16 |
|
df-rn |
|- ran ( S ( Inv ` C ) R ) = dom `' ( S ( Inv ` C ) R ) |
17 |
15 16
|
eqtr4di |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> dom ( R ( Inv ` C ) S ) = ran ( S ( Inv ` C ) R ) ) |
18 |
12 17
|
eqtrd |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( Iso ` C ) S ) = ran ( S ( Inv ` C ) R ) ) |
19 |
18
|
eleq2d |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ( R ( Iso ` C ) S ) <-> f e. ran ( S ( Inv ` C ) R ) ) ) |
20 |
|
vex |
|- f e. _V |
21 |
|
elrng |
|- ( f e. _V -> ( f e. ran ( S ( Inv ` C ) R ) <-> E. g g ( S ( Inv ` C ) R ) f ) ) |
22 |
20 21
|
mp1i |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ran ( S ( Inv ` C ) R ) <-> E. g g ( S ( Inv ` C ) R ) f ) ) |
23 |
19 22
|
bitrd |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ( R ( Iso ` C ) S ) <-> E. g g ( S ( Inv ` C ) R ) f ) ) |
24 |
|
df-br |
|- ( g ( S ( Inv ` C ) R ) f <-> <. g , f >. e. ( S ( Inv ` C ) R ) ) |
25 |
24
|
exbii |
|- ( E. g g ( S ( Inv ` C ) R ) f <-> E. g <. g , f >. e. ( S ( Inv ` C ) R ) ) |
26 |
|
vex |
|- g e. _V |
27 |
26 20
|
opeldm |
|- ( <. g , f >. e. ( S ( Inv ` C ) R ) -> g e. dom ( S ( Inv ` C ) R ) ) |
28 |
4 11 5 9 7 3
|
isoval |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( S ( Iso ` C ) R ) = dom ( S ( Inv ` C ) R ) ) |
29 |
28
|
eqcomd |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> dom ( S ( Inv ` C ) R ) = ( S ( Iso ` C ) R ) ) |
30 |
29
|
eleq2d |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( g e. dom ( S ( Inv ` C ) R ) <-> g e. ( S ( Iso ` C ) R ) ) ) |
31 |
5
|
adantr |
|- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> C e. Cat ) |
32 |
9
|
adantr |
|- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> S e. ( Base ` C ) ) |
33 |
7
|
adantr |
|- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> R e. ( Base ` C ) ) |
34 |
|
simpr |
|- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> g e. ( S ( Iso ` C ) R ) ) |
35 |
3 4 31 32 33 34
|
brcici |
|- ( ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) /\ g e. ( S ( Iso ` C ) R ) ) -> S ( ~=c ` C ) R ) |
36 |
35
|
ex |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( g e. ( S ( Iso ` C ) R ) -> S ( ~=c ` C ) R ) ) |
37 |
30 36
|
sylbid |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( g e. dom ( S ( Inv ` C ) R ) -> S ( ~=c ` C ) R ) ) |
38 |
27 37
|
syl5com |
|- ( <. g , f >. e. ( S ( Inv ` C ) R ) -> ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> S ( ~=c ` C ) R ) ) |
39 |
38
|
exlimiv |
|- ( E. g <. g , f >. e. ( S ( Inv ` C ) R ) -> ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> S ( ~=c ` C ) R ) ) |
40 |
39
|
com12 |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( E. g <. g , f >. e. ( S ( Inv ` C ) R ) -> S ( ~=c ` C ) R ) ) |
41 |
25 40
|
syl5bi |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( E. g g ( S ( Inv ` C ) R ) f -> S ( ~=c ` C ) R ) ) |
42 |
23 41
|
sylbid |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( f e. ( R ( Iso ` C ) S ) -> S ( ~=c ` C ) R ) ) |
43 |
42
|
exlimdv |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( E. f f e. ( R ( Iso ` C ) S ) -> S ( ~=c ` C ) R ) ) |
44 |
10 43
|
sylbid |
|- ( ( C e. Cat /\ ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) ) -> ( R ( ~=c ` C ) S -> S ( ~=c ` C ) R ) ) |
45 |
44
|
impancom |
|- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> ( ( S e. ( Base ` C ) /\ R e. ( Base ` C ) ) -> S ( ~=c ` C ) R ) ) |
46 |
1 2 45
|
mp2and |
|- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S ( ~=c ` C ) R ) |