| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ciclcl |  |-  ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> R e. ( Base ` C ) ) | 
						
							| 2 |  | cicrcl |  |-  ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S e. ( Base ` C ) ) | 
						
							| 3 | 1 2 | jca |  |-  ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) ) | 
						
							| 4 | 3 | ex |  |-  ( C e. Cat -> ( R ( ~=c ` C ) S -> ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) ) ) | 
						
							| 5 |  | cicrcl |  |-  ( ( C e. Cat /\ S ( ~=c ` C ) T ) -> T e. ( Base ` C ) ) | 
						
							| 6 | 5 | ex |  |-  ( C e. Cat -> ( S ( ~=c ` C ) T -> T e. ( Base ` C ) ) ) | 
						
							| 7 | 4 6 | anim12d |  |-  ( C e. Cat -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) | 
						
							| 8 | 7 | 3impib |  |-  ( ( C e. Cat /\ R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) | 
						
							| 9 |  | eqid |  |-  ( Iso ` C ) = ( Iso ` C ) | 
						
							| 10 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 11 |  | simpl |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> C e. Cat ) | 
						
							| 12 |  | simpll |  |-  ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> R e. ( Base ` C ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R e. ( Base ` C ) ) | 
						
							| 14 |  | simplr |  |-  ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> S e. ( Base ` C ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> S e. ( Base ` C ) ) | 
						
							| 16 | 9 10 11 13 15 | cic |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( R ( ~=c ` C ) S <-> E. f f e. ( R ( Iso ` C ) S ) ) ) | 
						
							| 17 |  | simprr |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> T e. ( Base ` C ) ) | 
						
							| 18 | 9 10 11 15 17 | cic |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( S ( ~=c ` C ) T <-> E. g g e. ( S ( Iso ` C ) T ) ) ) | 
						
							| 19 | 16 18 | anbi12d |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) <-> ( E. f f e. ( R ( Iso ` C ) S ) /\ E. g g e. ( S ( Iso ` C ) T ) ) ) ) | 
						
							| 20 | 11 | adantl |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> C e. Cat ) | 
						
							| 21 | 13 | adantl |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> R e. ( Base ` C ) ) | 
						
							| 22 | 17 | adantl |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> T e. ( Base ` C ) ) | 
						
							| 23 |  | eqid |  |-  ( comp ` C ) = ( comp ` C ) | 
						
							| 24 | 15 | adantl |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> S e. ( Base ` C ) ) | 
						
							| 25 |  | simplr |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> f e. ( R ( Iso ` C ) S ) ) | 
						
							| 26 |  | simpll |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> g e. ( S ( Iso ` C ) T ) ) | 
						
							| 27 | 10 23 9 20 21 24 22 25 26 | isoco |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> ( g ( <. R , S >. ( comp ` C ) T ) f ) e. ( R ( Iso ` C ) T ) ) | 
						
							| 28 | 9 10 20 21 22 27 | brcici |  |-  ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> R ( ~=c ` C ) T ) | 
						
							| 29 | 28 | ex |  |-  ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) | 
						
							| 30 | 29 | ex |  |-  ( g e. ( S ( Iso ` C ) T ) -> ( f e. ( R ( Iso ` C ) S ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) | 
						
							| 31 | 30 | exlimiv |  |-  ( E. g g e. ( S ( Iso ` C ) T ) -> ( f e. ( R ( Iso ` C ) S ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) | 
						
							| 32 | 31 | com12 |  |-  ( f e. ( R ( Iso ` C ) S ) -> ( E. g g e. ( S ( Iso ` C ) T ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) | 
						
							| 33 | 32 | exlimiv |  |-  ( E. f f e. ( R ( Iso ` C ) S ) -> ( E. g g e. ( S ( Iso ` C ) T ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( E. f f e. ( R ( Iso ` C ) S ) /\ E. g g e. ( S ( Iso ` C ) T ) ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) | 
						
							| 35 | 34 | com12 |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( ( E. f f e. ( R ( Iso ` C ) S ) /\ E. g g e. ( S ( Iso ` C ) T ) ) -> R ( ~=c ` C ) T ) ) | 
						
							| 36 | 19 35 | sylbid |  |-  ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> R ( ~=c ` C ) T ) ) | 
						
							| 37 | 36 | ex |  |-  ( C e. Cat -> ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> R ( ~=c ` C ) T ) ) ) | 
						
							| 38 | 37 | com23 |  |-  ( C e. Cat -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> R ( ~=c ` C ) T ) ) ) | 
						
							| 39 | 38 | 3impib |  |-  ( ( C e. Cat /\ R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> R ( ~=c ` C ) T ) ) | 
						
							| 40 | 8 39 | mpd |  |-  ( ( C e. Cat /\ R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> R ( ~=c ` C ) T ) |