| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							circlemethhgt.h | 
							 |-  ( ph -> H : NN --> RR )  | 
						
						
							| 2 | 
							
								
							 | 
							circlemethhgt.k | 
							 |-  ( ph -> K : NN --> RR )  | 
						
						
							| 3 | 
							
								
							 | 
							circlemethhgt.n | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 4 | 
							
								
							 | 
							3nn | 
							 |-  3 e. NN  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							 |-  ( ph -> 3 e. NN )  | 
						
						
							| 6 | 
							
								
							 | 
							s3len | 
							 |-  ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) = 3  | 
						
						
							| 7 | 
							
								6
							 | 
							eqcomi | 
							 |-  3 = ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> )  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							 |-  ( ph -> 3 = ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> x e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> y e. RR )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							remulcld | 
							 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR )  | 
						
						
							| 12 | 
							
								11
							 | 
							recnd | 
							 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. CC )  | 
						
						
							| 13 | 
							
								
							 | 
							vmaf | 
							 |-  Lam : NN --> RR  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							 |-  ( ph -> Lam : NN --> RR )  | 
						
						
							| 15 | 
							
								
							 | 
							nnex | 
							 |-  NN e. _V  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							 |-  ( ph -> NN e. _V )  | 
						
						
							| 17 | 
							
								
							 | 
							inidm | 
							 |-  ( NN i^i NN ) = NN  | 
						
						
							| 18 | 
							
								12 14 1 16 16 17
							 | 
							off | 
							 |-  ( ph -> ( Lam oF x. H ) : NN --> CC )  | 
						
						
							| 19 | 
							
								
							 | 
							cnex | 
							 |-  CC e. _V  | 
						
						
							| 20 | 
							
								19 15
							 | 
							elmap | 
							 |-  ( ( Lam oF x. H ) e. ( CC ^m NN ) <-> ( Lam oF x. H ) : NN --> CC )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							sylibr | 
							 |-  ( ph -> ( Lam oF x. H ) e. ( CC ^m NN ) )  | 
						
						
							| 22 | 
							
								12 14 2 16 16 17
							 | 
							off | 
							 |-  ( ph -> ( Lam oF x. K ) : NN --> CC )  | 
						
						
							| 23 | 
							
								19 15
							 | 
							elmap | 
							 |-  ( ( Lam oF x. K ) e. ( CC ^m NN ) <-> ( Lam oF x. K ) : NN --> CC )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylibr | 
							 |-  ( ph -> ( Lam oF x. K ) e. ( CC ^m NN ) )  | 
						
						
							| 25 | 
							
								21 24 24
							 | 
							s3cld | 
							 |-  ( ph -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> e. Word ( CC ^m NN ) )  | 
						
						
							| 26 | 
							
								8 25
							 | 
							wrdfd | 
							 |-  ( ph -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) )  | 
						
						
							| 27 | 
							
								3 5 26
							 | 
							circlemeth | 
							 |-  ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x )  | 
						
						
							| 28 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = 0 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = 0 -> ( n ` a ) = ( n ` 0 ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							fveq12d | 
							 |-  ( a = 0 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = 1 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = 1 -> ( n ` a ) = ( n ` 1 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							fveq12d | 
							 |-  ( a = 1 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = 2 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = 2 -> ( n ` a ) = ( n ` 2 ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							fveq12d | 
							 |-  ( a = 2 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) )  | 
						
						
							| 37 | 
							
								26
							 | 
							adantr | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ffvelcdmda | 
							 |-  ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) )  | 
						
						
							| 39 | 
							
								
							 | 
							elmapi | 
							 |-  ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							syl | 
							 |-  ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC )  | 
						
						
							| 41 | 
							
								
							 | 
							ssidd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> NN C_ NN )  | 
						
						
							| 42 | 
							
								3
							 | 
							nn0zd | 
							 |-  ( ph -> N e. ZZ )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantr | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> N e. ZZ )  | 
						
						
							| 44 | 
							
								
							 | 
							3nn0 | 
							 |-  3 e. NN0  | 
						
						
							| 45 | 
							
								44
							 | 
							a1i | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 3 e. NN0 )  | 
						
						
							| 46 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n e. ( NN ( repr ` 3 ) N ) )  | 
						
						
							| 47 | 
							
								41 43 45 46
							 | 
							reprf | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n : ( 0 ..^ 3 ) --> NN )  | 
						
						
							| 48 | 
							
								47
							 | 
							ffvelcdmda | 
							 |-  ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( n ` a ) e. NN )  | 
						
						
							| 49 | 
							
								40 48
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) e. CC )  | 
						
						
							| 50 | 
							
								30 33 36 49
							 | 
							prodfzo03 | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) x. ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							ovex | 
							 |-  ( Lam oF x. H ) e. _V  | 
						
						
							| 52 | 
							
								
							 | 
							s3fv0 | 
							 |-  ( ( Lam oF x. H ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							mp1i | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							fveq1d | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) = ( ( Lam oF x. H ) ` ( n ` 0 ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ph )  | 
						
						
							| 56 | 
							
								
							 | 
							c0ex | 
							 |-  0 e. _V  | 
						
						
							| 57 | 
							
								56
							 | 
							tpid1 | 
							 |-  0 e. { 0 , 1 , 2 } | 
						
						
							| 58 | 
							
								
							 | 
							fzo0to3tp | 
							 |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 } | 
						
						
							| 59 | 
							
								57 58
							 | 
							eleqtrri | 
							 |-  0 e. ( 0 ..^ 3 )  | 
						
						
							| 60 | 
							
								59
							 | 
							a1i | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 0 e. ( 0 ..^ 3 ) )  | 
						
						
							| 61 | 
							
								47 60
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 0 ) e. NN )  | 
						
						
							| 62 | 
							
								
							 | 
							ffn | 
							 |-  ( Lam : NN --> RR -> Lam Fn NN )  | 
						
						
							| 63 | 
							
								13 62
							 | 
							ax-mp | 
							 |-  Lam Fn NN  | 
						
						
							| 64 | 
							
								63
							 | 
							a1i | 
							 |-  ( ph -> Lam Fn NN )  | 
						
						
							| 65 | 
							
								1
							 | 
							ffnd | 
							 |-  ( ph -> H Fn NN )  | 
						
						
							| 66 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( n ` 0 ) e. NN ) -> ( Lam ` ( n ` 0 ) ) = ( Lam ` ( n ` 0 ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( n ` 0 ) e. NN ) -> ( H ` ( n ` 0 ) ) = ( H ` ( n ` 0 ) ) )  | 
						
						
							| 68 | 
							
								64 65 16 16 17 66 67
							 | 
							ofval | 
							 |-  ( ( ph /\ ( n ` 0 ) e. NN ) -> ( ( Lam oF x. H ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) )  | 
						
						
							| 69 | 
							
								55 61 68
							 | 
							syl2anc | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. H ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) )  | 
						
						
							| 70 | 
							
								54 69
							 | 
							eqtrd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							ovex | 
							 |-  ( Lam oF x. K ) e. _V  | 
						
						
							| 72 | 
							
								
							 | 
							s3fv1 | 
							 |-  ( ( Lam oF x. K ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) )  | 
						
						
							| 73 | 
							
								71 72
							 | 
							mp1i | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							fveq1d | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) = ( ( Lam oF x. K ) ` ( n ` 1 ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 76 | 
							
								75
							 | 
							tpid2 | 
							 |-  1 e. { 0 , 1 , 2 } | 
						
						
							| 77 | 
							
								76 58
							 | 
							eleqtrri | 
							 |-  1 e. ( 0 ..^ 3 )  | 
						
						
							| 78 | 
							
								77
							 | 
							a1i | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 1 e. ( 0 ..^ 3 ) )  | 
						
						
							| 79 | 
							
								47 78
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 1 ) e. NN )  | 
						
						
							| 80 | 
							
								2
							 | 
							ffnd | 
							 |-  ( ph -> K Fn NN )  | 
						
						
							| 81 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( n ` 1 ) e. NN ) -> ( Lam ` ( n ` 1 ) ) = ( Lam ` ( n ` 1 ) ) )  | 
						
						
							| 82 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( n ` 1 ) e. NN ) -> ( K ` ( n ` 1 ) ) = ( K ` ( n ` 1 ) ) )  | 
						
						
							| 83 | 
							
								64 80 16 16 17 81 82
							 | 
							ofval | 
							 |-  ( ( ph /\ ( n ` 1 ) e. NN ) -> ( ( Lam oF x. K ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) )  | 
						
						
							| 84 | 
							
								55 79 83
							 | 
							syl2anc | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. K ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) )  | 
						
						
							| 85 | 
							
								74 84
							 | 
							eqtrd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							s3fv2 | 
							 |-  ( ( Lam oF x. K ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) )  | 
						
						
							| 87 | 
							
								71 86
							 | 
							mp1i | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							fveq1d | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) = ( ( Lam oF x. K ) ` ( n ` 2 ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							2ex | 
							 |-  2 e. _V  | 
						
						
							| 90 | 
							
								89
							 | 
							tpid3 | 
							 |-  2 e. { 0 , 1 , 2 } | 
						
						
							| 91 | 
							
								90 58
							 | 
							eleqtrri | 
							 |-  2 e. ( 0 ..^ 3 )  | 
						
						
							| 92 | 
							
								91
							 | 
							a1i | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 2 e. ( 0 ..^ 3 ) )  | 
						
						
							| 93 | 
							
								47 92
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 2 ) e. NN )  | 
						
						
							| 94 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( n ` 2 ) e. NN ) -> ( Lam ` ( n ` 2 ) ) = ( Lam ` ( n ` 2 ) ) )  | 
						
						
							| 95 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( n ` 2 ) e. NN ) -> ( K ` ( n ` 2 ) ) = ( K ` ( n ` 2 ) ) )  | 
						
						
							| 96 | 
							
								64 80 16 16 17 94 95
							 | 
							ofval | 
							 |-  ( ( ph /\ ( n ` 2 ) e. NN ) -> ( ( Lam oF x. K ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) )  | 
						
						
							| 97 | 
							
								55 93 96
							 | 
							syl2anc | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. K ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) )  | 
						
						
							| 98 | 
							
								88 97
							 | 
							eqtrd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) )  | 
						
						
							| 99 | 
							
								85 98
							 | 
							oveq12d | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) = ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) )  | 
						
						
							| 100 | 
							
								70 99
							 | 
							oveq12d | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) x. ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) )  | 
						
						
							| 101 | 
							
								50 100
							 | 
							eqtrd | 
							 |-  ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							sumeq2dv | 
							 |-  ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) )  | 
						
						
							| 103 | 
							
								
							 | 
							nfv | 
							 |-  F/ a ( ph /\ x e. ( 0 (,) 1 ) )  | 
						
						
							| 104 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ a ( ( ( Lam oF x. H ) vts N ) ` x )  | 
						
						
							| 105 | 
							
								
							 | 
							fzofi | 
							 |-  ( 1 ..^ 3 ) e. Fin  | 
						
						
							| 106 | 
							
								105
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 1 ..^ 3 ) e. Fin )  | 
						
						
							| 107 | 
							
								56
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> 0 e. _V )  | 
						
						
							| 108 | 
							
								
							 | 
							eqid | 
							 |-  0 = 0  | 
						
						
							| 109 | 
							
								108
							 | 
							orci | 
							 |-  ( 0 = 0 \/ 0 = 3 )  | 
						
						
							| 110 | 
							
								
							 | 
							0elfz | 
							 |-  ( 3 e. NN0 -> 0 e. ( 0 ... 3 ) )  | 
						
						
							| 111 | 
							
								
							 | 
							elfznelfzob | 
							 |-  ( 0 e. ( 0 ... 3 ) -> ( -. 0 e. ( 1 ..^ 3 ) <-> ( 0 = 0 \/ 0 = 3 ) ) )  | 
						
						
							| 112 | 
							
								44 110 111
							 | 
							mp2b | 
							 |-  ( -. 0 e. ( 1 ..^ 3 ) <-> ( 0 = 0 \/ 0 = 3 ) )  | 
						
						
							| 113 | 
							
								109 112
							 | 
							mpbir | 
							 |-  -. 0 e. ( 1 ..^ 3 )  | 
						
						
							| 114 | 
							
								113
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> -. 0 e. ( 1 ..^ 3 ) )  | 
						
						
							| 115 | 
							
								3
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> N e. NN0 )  | 
						
						
							| 116 | 
							
								
							 | 
							ioossre | 
							 |-  ( 0 (,) 1 ) C_ RR  | 
						
						
							| 117 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 118 | 
							
								116 117
							 | 
							sstri | 
							 |-  ( 0 (,) 1 ) C_ CC  | 
						
						
							| 119 | 
							
								118
							 | 
							a1i | 
							 |-  ( ph -> ( 0 (,) 1 ) C_ CC )  | 
						
						
							| 120 | 
							
								119
							 | 
							sselda | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> x e. CC )  | 
						
						
							| 121 | 
							
								120
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> x e. CC )  | 
						
						
							| 122 | 
							
								26
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) )  | 
						
						
							| 123 | 
							
								
							 | 
							fzo0ss1 | 
							 |-  ( 1 ..^ 3 ) C_ ( 0 ..^ 3 )  | 
						
						
							| 124 | 
							
								123
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 1 ..^ 3 ) C_ ( 0 ..^ 3 ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							sselda | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> a e. ( 0 ..^ 3 ) )  | 
						
						
							| 126 | 
							
								122 125
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) )  | 
						
						
							| 127 | 
							
								126 39
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC )  | 
						
						
							| 128 | 
							
								115 121 127
							 | 
							vtscl | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) e. CC )  | 
						
						
							| 129 | 
							
								51 52
							 | 
							ax-mp | 
							 |-  ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H )  | 
						
						
							| 130 | 
							
								28 129
							 | 
							eqtrdi | 
							 |-  ( a = 0 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. H ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							oveq1d | 
							 |-  ( a = 0 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) = ( ( Lam oF x. H ) vts N ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							fveq1d | 
							 |-  ( a = 0 -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( Lam oF x. H ) vts N ) ` x ) )  | 
						
						
							| 133 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> N e. NN0 )  | 
						
						
							| 134 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( Lam oF x. H ) : NN --> CC )  | 
						
						
							| 135 | 
							
								133 120 134
							 | 
							vtscl | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam oF x. H ) vts N ) ` x ) e. CC )  | 
						
						
							| 136 | 
							
								103 104 106 107 114 128 132 135
							 | 
							fprodsplitsn | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( ( 1 ..^ 3 ) u. { 0 } ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) ) | 
						
						
							| 137 | 
							
								
							 | 
							uncom | 
							 |-  ( ( 1 ..^ 3 ) u. { 0 } ) = ( { 0 } u. ( 1 ..^ 3 ) ) | 
						
						
							| 138 | 
							
								
							 | 
							fzo0sn0fzo1 | 
							 |-  ( 3 e. NN -> ( 0 ..^ 3 ) = ( { 0 } u. ( 1 ..^ 3 ) ) ) | 
						
						
							| 139 | 
							
								4 138
							 | 
							ax-mp | 
							 |-  ( 0 ..^ 3 ) = ( { 0 } u. ( 1 ..^ 3 ) ) | 
						
						
							| 140 | 
							
								137 139
							 | 
							eqtr4i | 
							 |-  ( ( 1 ..^ 3 ) u. { 0 } ) = ( 0 ..^ 3 ) | 
						
						
							| 141 | 
							
								140
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( 1 ..^ 3 ) u. { 0 } ) = ( 0 ..^ 3 ) ) | 
						
						
							| 142 | 
							
								141
							 | 
							prodeq1d | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( ( 1 ..^ 3 ) u. { 0 } ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) ) | 
						
						
							| 143 | 
							
								
							 | 
							fzo13pr | 
							 |-  ( 1 ..^ 3 ) = { 1 , 2 } | 
						
						
							| 144 | 
							
								143
							 | 
							eleq2i | 
							 |-  ( a e. ( 1 ..^ 3 ) <-> a e. { 1 , 2 } ) | 
						
						
							| 145 | 
							
								
							 | 
							vex | 
							 |-  a e. _V  | 
						
						
							| 146 | 
							
								145
							 | 
							elpr | 
							 |-  ( a e. { 1 , 2 } <-> ( a = 1 \/ a = 2 ) ) | 
						
						
							| 147 | 
							
								144 146
							 | 
							bitri | 
							 |-  ( a e. ( 1 ..^ 3 ) <-> ( a = 1 \/ a = 2 ) )  | 
						
						
							| 148 | 
							
								31
							 | 
							adantl | 
							 |-  ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) )  | 
						
						
							| 149 | 
							
								71 72
							 | 
							mp1i | 
							 |-  ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) )  | 
						
						
							| 150 | 
							
								148 149
							 | 
							eqtrd | 
							 |-  ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) )  | 
						
						
							| 151 | 
							
								34
							 | 
							adantl | 
							 |-  ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) )  | 
						
						
							| 152 | 
							
								71 86
							 | 
							mp1i | 
							 |-  ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) )  | 
						
						
							| 153 | 
							
								151 152
							 | 
							eqtrd | 
							 |-  ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) )  | 
						
						
							| 154 | 
							
								150 153
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( a = 1 \/ a = 2 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) )  | 
						
						
							| 155 | 
							
								147 154
							 | 
							sylan2b | 
							 |-  ( ( ph /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) )  | 
						
						
							| 157 | 
							
								156
							 | 
							oveq1d | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) = ( ( Lam oF x. K ) vts N ) )  | 
						
						
							| 158 | 
							
								157
							 | 
							fveq1d | 
							 |-  ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( Lam oF x. K ) vts N ) ` x ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							prodeq2dv | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) )  | 
						
						
							| 160 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( Lam oF x. K ) : NN --> CC )  | 
						
						
							| 161 | 
							
								133 120 160
							 | 
							vtscl | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam oF x. K ) vts N ) ` x ) e. CC )  | 
						
						
							| 162 | 
							
								
							 | 
							fprodconst | 
							 |-  ( ( ( 1 ..^ 3 ) e. Fin /\ ( ( ( Lam oF x. K ) vts N ) ` x ) e. CC ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) )  | 
						
						
							| 163 | 
							
								106 161 162
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) )  | 
						
						
							| 164 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 165 | 
							
								4 164
							 | 
							eleqtri | 
							 |-  3 e. ( ZZ>= ` 1 )  | 
						
						
							| 166 | 
							
								
							 | 
							hashfzo | 
							 |-  ( 3 e. ( ZZ>= ` 1 ) -> ( # ` ( 1 ..^ 3 ) ) = ( 3 - 1 ) )  | 
						
						
							| 167 | 
							
								165 166
							 | 
							ax-mp | 
							 |-  ( # ` ( 1 ..^ 3 ) ) = ( 3 - 1 )  | 
						
						
							| 168 | 
							
								
							 | 
							3m1e2 | 
							 |-  ( 3 - 1 ) = 2  | 
						
						
							| 169 | 
							
								167 168
							 | 
							eqtri | 
							 |-  ( # ` ( 1 ..^ 3 ) ) = 2  | 
						
						
							| 170 | 
							
								169
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( # ` ( 1 ..^ 3 ) ) = 2 )  | 
						
						
							| 171 | 
							
								170
							 | 
							oveq2d | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) )  | 
						
						
							| 172 | 
							
								159 163 171
							 | 
							3eqtrd | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							oveq1d | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) = ( ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) )  | 
						
						
							| 174 | 
							
								161
							 | 
							sqcld | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) e. CC )  | 
						
						
							| 175 | 
							
								135 174
							 | 
							mulcomd | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) = ( ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) )  | 
						
						
							| 176 | 
							
								173 175
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) = ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) )  | 
						
						
							| 177 | 
							
								136 142 176
							 | 
							3eqtr3d | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) )  | 
						
						
							| 178 | 
							
								177
							 | 
							oveq1d | 
							 |-  ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) = ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) )  | 
						
						
							| 179 | 
							
								178
							 | 
							itgeq2dv | 
							 |-  ( ph -> S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x )  | 
						
						
							| 180 | 
							
								27 102 179
							 | 
							3eqtr3d | 
							 |-  ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x )  |