Step |
Hyp |
Ref |
Expression |
1 |
|
circlemethhgt.h |
|- ( ph -> H : NN --> RR ) |
2 |
|
circlemethhgt.k |
|- ( ph -> K : NN --> RR ) |
3 |
|
circlemethhgt.n |
|- ( ph -> N e. NN0 ) |
4 |
|
3nn |
|- 3 e. NN |
5 |
4
|
a1i |
|- ( ph -> 3 e. NN ) |
6 |
|
s3len |
|- ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) = 3 |
7 |
6
|
eqcomi |
|- 3 = ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) |
8 |
7
|
a1i |
|- ( ph -> 3 = ( # ` <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ) ) |
9 |
|
simprl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> x e. RR ) |
10 |
|
simprr |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> y e. RR ) |
11 |
9 10
|
remulcld |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
12 |
11
|
recnd |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. CC ) |
13 |
|
vmaf |
|- Lam : NN --> RR |
14 |
13
|
a1i |
|- ( ph -> Lam : NN --> RR ) |
15 |
|
nnex |
|- NN e. _V |
16 |
15
|
a1i |
|- ( ph -> NN e. _V ) |
17 |
|
inidm |
|- ( NN i^i NN ) = NN |
18 |
12 14 1 16 16 17
|
off |
|- ( ph -> ( Lam oF x. H ) : NN --> CC ) |
19 |
|
cnex |
|- CC e. _V |
20 |
19 15
|
elmap |
|- ( ( Lam oF x. H ) e. ( CC ^m NN ) <-> ( Lam oF x. H ) : NN --> CC ) |
21 |
18 20
|
sylibr |
|- ( ph -> ( Lam oF x. H ) e. ( CC ^m NN ) ) |
22 |
12 14 2 16 16 17
|
off |
|- ( ph -> ( Lam oF x. K ) : NN --> CC ) |
23 |
19 15
|
elmap |
|- ( ( Lam oF x. K ) e. ( CC ^m NN ) <-> ( Lam oF x. K ) : NN --> CC ) |
24 |
22 23
|
sylibr |
|- ( ph -> ( Lam oF x. K ) e. ( CC ^m NN ) ) |
25 |
21 24 24
|
s3cld |
|- ( ph -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> e. Word ( CC ^m NN ) ) |
26 |
8 25
|
wrdfd |
|- ( ph -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
27 |
3 5 26
|
circlemeth |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
28 |
|
fveq2 |
|- ( a = 0 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ) |
29 |
|
fveq2 |
|- ( a = 0 -> ( n ` a ) = ( n ` 0 ) ) |
30 |
28 29
|
fveq12d |
|- ( a = 0 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) ) |
31 |
|
fveq2 |
|- ( a = 1 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ) |
32 |
|
fveq2 |
|- ( a = 1 -> ( n ` a ) = ( n ` 1 ) ) |
33 |
31 32
|
fveq12d |
|- ( a = 1 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) ) |
34 |
|
fveq2 |
|- ( a = 2 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ) |
35 |
|
fveq2 |
|- ( a = 2 -> ( n ` a ) = ( n ` 2 ) ) |
36 |
34 35
|
fveq12d |
|- ( a = 2 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) |
37 |
26
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
38 |
37
|
ffvelrnda |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) ) |
39 |
|
elmapi |
|- ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC ) |
40 |
38 39
|
syl |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC ) |
41 |
|
ssidd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> NN C_ NN ) |
42 |
3
|
nn0zd |
|- ( ph -> N e. ZZ ) |
43 |
42
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> N e. ZZ ) |
44 |
|
3nn0 |
|- 3 e. NN0 |
45 |
44
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 3 e. NN0 ) |
46 |
|
simpr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
47 |
41 43 45 46
|
reprf |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
48 |
47
|
ffvelrnda |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( n ` a ) e. NN ) |
49 |
40 48
|
ffvelrnd |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) e. CC ) |
50 |
30 33 36 49
|
prodfzo03 |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) x. ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) ) ) |
51 |
|
ovex |
|- ( Lam oF x. H ) e. _V |
52 |
|
s3fv0 |
|- ( ( Lam oF x. H ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) ) |
53 |
51 52
|
mp1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) ) |
54 |
53
|
fveq1d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) = ( ( Lam oF x. H ) ` ( n ` 0 ) ) ) |
55 |
|
simpl |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ph ) |
56 |
|
c0ex |
|- 0 e. _V |
57 |
56
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
58 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
59 |
57 58
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
60 |
59
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 0 e. ( 0 ..^ 3 ) ) |
61 |
47 60
|
ffvelrnd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 0 ) e. NN ) |
62 |
|
ffn |
|- ( Lam : NN --> RR -> Lam Fn NN ) |
63 |
13 62
|
ax-mp |
|- Lam Fn NN |
64 |
63
|
a1i |
|- ( ph -> Lam Fn NN ) |
65 |
1
|
ffnd |
|- ( ph -> H Fn NN ) |
66 |
|
eqidd |
|- ( ( ph /\ ( n ` 0 ) e. NN ) -> ( Lam ` ( n ` 0 ) ) = ( Lam ` ( n ` 0 ) ) ) |
67 |
|
eqidd |
|- ( ( ph /\ ( n ` 0 ) e. NN ) -> ( H ` ( n ` 0 ) ) = ( H ` ( n ` 0 ) ) ) |
68 |
64 65 16 16 17 66 67
|
ofval |
|- ( ( ph /\ ( n ` 0 ) e. NN ) -> ( ( Lam oF x. H ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) ) |
69 |
55 61 68
|
syl2anc |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. H ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) ) |
70 |
54 69
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) ) |
71 |
|
ovex |
|- ( Lam oF x. K ) e. _V |
72 |
|
s3fv1 |
|- ( ( Lam oF x. K ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) ) |
73 |
71 72
|
mp1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) ) |
74 |
73
|
fveq1d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) = ( ( Lam oF x. K ) ` ( n ` 1 ) ) ) |
75 |
|
1ex |
|- 1 e. _V |
76 |
75
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
77 |
76 58
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
78 |
77
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 1 e. ( 0 ..^ 3 ) ) |
79 |
47 78
|
ffvelrnd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 1 ) e. NN ) |
80 |
2
|
ffnd |
|- ( ph -> K Fn NN ) |
81 |
|
eqidd |
|- ( ( ph /\ ( n ` 1 ) e. NN ) -> ( Lam ` ( n ` 1 ) ) = ( Lam ` ( n ` 1 ) ) ) |
82 |
|
eqidd |
|- ( ( ph /\ ( n ` 1 ) e. NN ) -> ( K ` ( n ` 1 ) ) = ( K ` ( n ` 1 ) ) ) |
83 |
64 80 16 16 17 81 82
|
ofval |
|- ( ( ph /\ ( n ` 1 ) e. NN ) -> ( ( Lam oF x. K ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) ) |
84 |
55 79 83
|
syl2anc |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. K ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) ) |
85 |
74 84
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) = ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) ) |
86 |
|
s3fv2 |
|- ( ( Lam oF x. K ) e. _V -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) ) |
87 |
71 86
|
mp1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) ) |
88 |
87
|
fveq1d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) = ( ( Lam oF x. K ) ` ( n ` 2 ) ) ) |
89 |
|
2ex |
|- 2 e. _V |
90 |
89
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
91 |
90 58
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
92 |
91
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 2 e. ( 0 ..^ 3 ) ) |
93 |
47 92
|
ffvelrnd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( n ` 2 ) e. NN ) |
94 |
|
eqidd |
|- ( ( ph /\ ( n ` 2 ) e. NN ) -> ( Lam ` ( n ` 2 ) ) = ( Lam ` ( n ` 2 ) ) ) |
95 |
|
eqidd |
|- ( ( ph /\ ( n ` 2 ) e. NN ) -> ( K ` ( n ` 2 ) ) = ( K ` ( n ` 2 ) ) ) |
96 |
64 80 16 16 17 94 95
|
ofval |
|- ( ( ph /\ ( n ` 2 ) e. NN ) -> ( ( Lam oF x. K ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) |
97 |
55 93 96
|
syl2anc |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( Lam oF x. K ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) |
98 |
88 97
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) = ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) |
99 |
85 98
|
oveq12d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) = ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) |
100 |
70 99
|
oveq12d |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) ` ( n ` 0 ) ) x. ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ` ( n ` 1 ) ) x. ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ` ( n ` 2 ) ) ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
101 |
50 100
|
eqtrd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
102 |
101
|
sumeq2dv |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) ` ( n ` a ) ) = sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) ) |
103 |
|
nfv |
|- F/ a ( ph /\ x e. ( 0 (,) 1 ) ) |
104 |
|
nfcv |
|- F/_ a ( ( ( Lam oF x. H ) vts N ) ` x ) |
105 |
|
fzofi |
|- ( 1 ..^ 3 ) e. Fin |
106 |
105
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 1 ..^ 3 ) e. Fin ) |
107 |
56
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> 0 e. _V ) |
108 |
|
eqid |
|- 0 = 0 |
109 |
108
|
orci |
|- ( 0 = 0 \/ 0 = 3 ) |
110 |
|
0elfz |
|- ( 3 e. NN0 -> 0 e. ( 0 ... 3 ) ) |
111 |
|
elfznelfzob |
|- ( 0 e. ( 0 ... 3 ) -> ( -. 0 e. ( 1 ..^ 3 ) <-> ( 0 = 0 \/ 0 = 3 ) ) ) |
112 |
44 110 111
|
mp2b |
|- ( -. 0 e. ( 1 ..^ 3 ) <-> ( 0 = 0 \/ 0 = 3 ) ) |
113 |
109 112
|
mpbir |
|- -. 0 e. ( 1 ..^ 3 ) |
114 |
113
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> -. 0 e. ( 1 ..^ 3 ) ) |
115 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> N e. NN0 ) |
116 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
117 |
|
ax-resscn |
|- RR C_ CC |
118 |
116 117
|
sstri |
|- ( 0 (,) 1 ) C_ CC |
119 |
118
|
a1i |
|- ( ph -> ( 0 (,) 1 ) C_ CC ) |
120 |
119
|
sselda |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> x e. CC ) |
121 |
120
|
adantr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> x e. CC ) |
122 |
26
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
123 |
|
fzo0ss1 |
|- ( 1 ..^ 3 ) C_ ( 0 ..^ 3 ) |
124 |
123
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 1 ..^ 3 ) C_ ( 0 ..^ 3 ) ) |
125 |
124
|
sselda |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> a e. ( 0 ..^ 3 ) ) |
126 |
122 125
|
ffvelrnd |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) e. ( CC ^m NN ) ) |
127 |
126 39
|
syl |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) : NN --> CC ) |
128 |
115 121 127
|
vtscl |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) e. CC ) |
129 |
51 52
|
ax-mp |
|- ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 0 ) = ( Lam oF x. H ) |
130 |
28 129
|
eqtrdi |
|- ( a = 0 -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. H ) ) |
131 |
130
|
oveq1d |
|- ( a = 0 -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) = ( ( Lam oF x. H ) vts N ) ) |
132 |
131
|
fveq1d |
|- ( a = 0 -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( Lam oF x. H ) vts N ) ` x ) ) |
133 |
3
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> N e. NN0 ) |
134 |
18
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( Lam oF x. H ) : NN --> CC ) |
135 |
133 120 134
|
vtscl |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam oF x. H ) vts N ) ` x ) e. CC ) |
136 |
103 104 106 107 114 128 132 135
|
fprodsplitsn |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( ( 1 ..^ 3 ) u. { 0 } ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) ) |
137 |
|
uncom |
|- ( ( 1 ..^ 3 ) u. { 0 } ) = ( { 0 } u. ( 1 ..^ 3 ) ) |
138 |
|
fzo0sn0fzo1 |
|- ( 3 e. NN -> ( 0 ..^ 3 ) = ( { 0 } u. ( 1 ..^ 3 ) ) ) |
139 |
4 138
|
ax-mp |
|- ( 0 ..^ 3 ) = ( { 0 } u. ( 1 ..^ 3 ) ) |
140 |
137 139
|
eqtr4i |
|- ( ( 1 ..^ 3 ) u. { 0 } ) = ( 0 ..^ 3 ) |
141 |
140
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( 1 ..^ 3 ) u. { 0 } ) = ( 0 ..^ 3 ) ) |
142 |
141
|
prodeq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( ( 1 ..^ 3 ) u. { 0 } ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) ) |
143 |
|
fzo13pr |
|- ( 1 ..^ 3 ) = { 1 , 2 } |
144 |
143
|
eleq2i |
|- ( a e. ( 1 ..^ 3 ) <-> a e. { 1 , 2 } ) |
145 |
|
vex |
|- a e. _V |
146 |
145
|
elpr |
|- ( a e. { 1 , 2 } <-> ( a = 1 \/ a = 2 ) ) |
147 |
144 146
|
bitri |
|- ( a e. ( 1 ..^ 3 ) <-> ( a = 1 \/ a = 2 ) ) |
148 |
31
|
adantl |
|- ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) ) |
149 |
71 72
|
mp1i |
|- ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 1 ) = ( Lam oF x. K ) ) |
150 |
148 149
|
eqtrd |
|- ( ( ph /\ a = 1 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
151 |
34
|
adantl |
|- ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) ) |
152 |
71 86
|
mp1i |
|- ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` 2 ) = ( Lam oF x. K ) ) |
153 |
151 152
|
eqtrd |
|- ( ( ph /\ a = 2 ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
154 |
150 153
|
jaodan |
|- ( ( ph /\ ( a = 1 \/ a = 2 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
155 |
147 154
|
sylan2b |
|- ( ( ph /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
156 |
155
|
adantlr |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) = ( Lam oF x. K ) ) |
157 |
156
|
oveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) = ( ( Lam oF x. K ) vts N ) ) |
158 |
157
|
fveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 1 ..^ 3 ) ) -> ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( Lam oF x. K ) vts N ) ` x ) ) |
159 |
158
|
prodeq2dv |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) ) |
160 |
22
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( Lam oF x. K ) : NN --> CC ) |
161 |
133 120 160
|
vtscl |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam oF x. K ) vts N ) ` x ) e. CC ) |
162 |
|
fprodconst |
|- ( ( ( 1 ..^ 3 ) e. Fin /\ ( ( ( Lam oF x. K ) vts N ) ` x ) e. CC ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) ) |
163 |
106 161 162
|
syl2anc |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( Lam oF x. K ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) ) |
164 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
165 |
4 164
|
eleqtri |
|- 3 e. ( ZZ>= ` 1 ) |
166 |
|
hashfzo |
|- ( 3 e. ( ZZ>= ` 1 ) -> ( # ` ( 1 ..^ 3 ) ) = ( 3 - 1 ) ) |
167 |
165 166
|
ax-mp |
|- ( # ` ( 1 ..^ 3 ) ) = ( 3 - 1 ) |
168 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
169 |
167 168
|
eqtri |
|- ( # ` ( 1 ..^ 3 ) ) = 2 |
170 |
169
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( # ` ( 1 ..^ 3 ) ) = 2 ) |
171 |
170
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ ( # ` ( 1 ..^ 3 ) ) ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) |
172 |
159 163 171
|
3eqtrd |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) |
173 |
172
|
oveq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) = ( ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) ) |
174 |
161
|
sqcld |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) e. CC ) |
175 |
135 174
|
mulcomd |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) = ( ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) ) |
176 |
173 175
|
eqtr4d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 1 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( ( ( Lam oF x. H ) vts N ) ` x ) ) = ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) ) |
177 |
136 142 176
|
3eqtr3d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) = ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) ) |
178 |
177
|
oveq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) = ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) ) |
179 |
178
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( <" ( Lam oF x. H ) ( Lam oF x. K ) ( Lam oF x. K ) "> ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
180 |
27 102 179
|
3eqtr3d |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( ( Lam ` ( n ` 0 ) ) x. ( H ` ( n ` 0 ) ) ) x. ( ( ( Lam ` ( n ` 1 ) ) x. ( K ` ( n ` 1 ) ) ) x. ( ( Lam ` ( n ` 2 ) ) x. ( K ` ( n ` 2 ) ) ) ) ) = S. ( 0 (,) 1 ) ( ( ( ( ( Lam oF x. H ) vts N ) ` x ) x. ( ( ( ( Lam oF x. K ) vts N ) ` x ) ^ 2 ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |