Step |
Hyp |
Ref |
Expression |
1 |
|
circlemethnat.r |
|- R = ( # ` ( A ( repr ` S ) N ) ) |
2 |
|
circlemethnat.f |
|- F = ( ( ( ( _Ind ` NN ) ` A ) vts N ) ` x ) |
3 |
|
circlemethnat.n |
|- N e. NN0 |
4 |
|
circlemethnat.a |
|- A C_ NN |
5 |
|
circlemethnat.s |
|- S e. NN |
6 |
|
nnex |
|- NN e. _V |
7 |
|
indf |
|- ( ( NN e. _V /\ A C_ NN ) -> ( ( _Ind ` NN ) ` A ) : NN --> { 0 , 1 } ) |
8 |
6 4 7
|
mp2an |
|- ( ( _Ind ` NN ) ` A ) : NN --> { 0 , 1 } |
9 |
|
pr01ssre |
|- { 0 , 1 } C_ RR |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
9 10
|
sstri |
|- { 0 , 1 } C_ CC |
12 |
|
fss |
|- ( ( ( ( _Ind ` NN ) ` A ) : NN --> { 0 , 1 } /\ { 0 , 1 } C_ CC ) -> ( ( _Ind ` NN ) ` A ) : NN --> CC ) |
13 |
8 11 12
|
mp2an |
|- ( ( _Ind ` NN ) ` A ) : NN --> CC |
14 |
|
cnex |
|- CC e. _V |
15 |
14 6
|
elmap |
|- ( ( ( _Ind ` NN ) ` A ) e. ( CC ^m NN ) <-> ( ( _Ind ` NN ) ` A ) : NN --> CC ) |
16 |
13 15
|
mpbir |
|- ( ( _Ind ` NN ) ` A ) e. ( CC ^m NN ) |
17 |
16
|
elexi |
|- ( ( _Ind ` NN ) ` A ) e. _V |
18 |
17
|
fvconst2 |
|- ( a e. ( 0 ..^ S ) -> ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) = ( ( _Ind ` NN ) ` A ) ) |
19 |
18
|
adantl |
|- ( ( ( T. /\ c e. ( NN ( repr ` S ) N ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) = ( ( _Ind ` NN ) ` A ) ) |
20 |
19
|
fveq1d |
|- ( ( ( T. /\ c e. ( NN ( repr ` S ) N ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
21 |
20
|
prodeq2dv |
|- ( ( T. /\ c e. ( NN ( repr ` S ) N ) ) -> prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
22 |
21
|
sumeq2dv |
|- ( T. -> sum_ c e. ( NN ( repr ` S ) N ) prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = sum_ c e. ( NN ( repr ` S ) N ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
23 |
4
|
a1i |
|- ( T. -> A C_ NN ) |
24 |
3
|
a1i |
|- ( T. -> N e. NN0 ) |
25 |
5
|
a1i |
|- ( T. -> S e. NN ) |
26 |
25
|
nnnn0d |
|- ( T. -> S e. NN0 ) |
27 |
23 24 26
|
hashrepr |
|- ( T. -> ( # ` ( A ( repr ` S ) N ) ) = sum_ c e. ( NN ( repr ` S ) N ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
28 |
22 27
|
eqtr4d |
|- ( T. -> sum_ c e. ( NN ( repr ` S ) N ) prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = ( # ` ( A ( repr ` S ) N ) ) ) |
29 |
1 28
|
eqtr4id |
|- ( T. -> R = sum_ c e. ( NN ( repr ` S ) N ) prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) ) |
30 |
16
|
fconst6 |
|- ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) : ( 0 ..^ S ) --> ( CC ^m NN ) |
31 |
30
|
a1i |
|- ( T. -> ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
32 |
24 25 31
|
circlemeth |
|- ( T. -> sum_ c e. ( NN ( repr ` S ) N ) prod_ a e. ( 0 ..^ S ) ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) ` ( c ` a ) ) = S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ S ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
33 |
|
fzofi |
|- ( 0 ..^ S ) e. Fin |
34 |
33
|
a1i |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> ( 0 ..^ S ) e. Fin ) |
35 |
3
|
a1i |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> N e. NN0 ) |
36 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
37 |
36 10
|
sstri |
|- ( 0 (,) 1 ) C_ CC |
38 |
37
|
a1i |
|- ( T. -> ( 0 (,) 1 ) C_ CC ) |
39 |
38
|
sselda |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> x e. CC ) |
40 |
13
|
a1i |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> ( ( _Ind ` NN ) ` A ) : NN --> CC ) |
41 |
35 39 40
|
vtscl |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> ( ( ( ( _Ind ` NN ) ` A ) vts N ) ` x ) e. CC ) |
42 |
2 41
|
eqeltrid |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> F e. CC ) |
43 |
|
fprodconst |
|- ( ( ( 0 ..^ S ) e. Fin /\ F e. CC ) -> prod_ a e. ( 0 ..^ S ) F = ( F ^ ( # ` ( 0 ..^ S ) ) ) ) |
44 |
34 42 43
|
syl2anc |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ S ) F = ( F ^ ( # ` ( 0 ..^ S ) ) ) ) |
45 |
18
|
adantl |
|- ( ( ( T. /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) = ( ( _Ind ` NN ) ` A ) ) |
46 |
45
|
oveq1d |
|- ( ( ( T. /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) = ( ( ( _Ind ` NN ) ` A ) vts N ) ) |
47 |
46
|
fveq1d |
|- ( ( ( T. /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ S ) ) -> ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) ` x ) = ( ( ( ( _Ind ` NN ) ` A ) vts N ) ` x ) ) |
48 |
2 47
|
eqtr4id |
|- ( ( ( T. /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ S ) ) -> F = ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) ` x ) ) |
49 |
48
|
prodeq2dv |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ S ) F = prod_ a e. ( 0 ..^ S ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) ` x ) ) |
50 |
26
|
adantr |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> S e. NN0 ) |
51 |
|
hashfzo0 |
|- ( S e. NN0 -> ( # ` ( 0 ..^ S ) ) = S ) |
52 |
50 51
|
syl |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> ( # ` ( 0 ..^ S ) ) = S ) |
53 |
52
|
oveq2d |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> ( F ^ ( # ` ( 0 ..^ S ) ) ) = ( F ^ S ) ) |
54 |
44 49 53
|
3eqtr3d |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ S ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) ` x ) = ( F ^ S ) ) |
55 |
54
|
oveq1d |
|- ( ( T. /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 0 ..^ S ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) = ( ( F ^ S ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) ) |
56 |
55
|
itgeq2dv |
|- ( T. -> S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ S ) ( ( ( ( ( 0 ..^ S ) X. { ( ( _Ind ` NN ) ` A ) } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x = S. ( 0 (,) 1 ) ( ( F ^ S ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
57 |
29 32 56
|
3eqtrd |
|- ( T. -> R = S. ( 0 (,) 1 ) ( ( F ^ S ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
58 |
57
|
mptru |
|- R = S. ( 0 (,) 1 ) ( ( F ^ S ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x |