Step |
Hyp |
Ref |
Expression |
1 |
|
circlevma.n |
|- ( ph -> N e. NN0 ) |
2 |
|
3nn |
|- 3 e. NN |
3 |
2
|
a1i |
|- ( ph -> 3 e. NN ) |
4 |
|
vmaf |
|- Lam : NN --> RR |
5 |
|
ax-resscn |
|- RR C_ CC |
6 |
|
fss |
|- ( ( Lam : NN --> RR /\ RR C_ CC ) -> Lam : NN --> CC ) |
7 |
4 5 6
|
mp2an |
|- Lam : NN --> CC |
8 |
|
cnex |
|- CC e. _V |
9 |
|
nnex |
|- NN e. _V |
10 |
|
elmapg |
|- ( ( CC e. _V /\ NN e. _V ) -> ( Lam e. ( CC ^m NN ) <-> Lam : NN --> CC ) ) |
11 |
8 9 10
|
mp2an |
|- ( Lam e. ( CC ^m NN ) <-> Lam : NN --> CC ) |
12 |
7 11
|
mpbir |
|- Lam e. ( CC ^m NN ) |
13 |
12
|
fconst6 |
|- ( ( 0 ..^ 3 ) X. { Lam } ) : ( 0 ..^ 3 ) --> ( CC ^m NN ) |
14 |
13
|
a1i |
|- ( ph -> ( ( 0 ..^ 3 ) X. { Lam } ) : ( 0 ..^ 3 ) --> ( CC ^m NN ) ) |
15 |
1 3 14
|
circlemeth |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
16 |
|
c0ex |
|- 0 e. _V |
17 |
16
|
tpid1 |
|- 0 e. { 0 , 1 , 2 } |
18 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
19 |
17 18
|
eleqtrri |
|- 0 e. ( 0 ..^ 3 ) |
20 |
|
eleq1 |
|- ( a = 0 -> ( a e. ( 0 ..^ 3 ) <-> 0 e. ( 0 ..^ 3 ) ) ) |
21 |
19 20
|
mpbiri |
|- ( a = 0 -> a e. ( 0 ..^ 3 ) ) |
22 |
12
|
elexi |
|- Lam e. _V |
23 |
22
|
fvconst2 |
|- ( a e. ( 0 ..^ 3 ) -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
24 |
21 23
|
syl |
|- ( a = 0 -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
25 |
|
fveq2 |
|- ( a = 0 -> ( n ` a ) = ( n ` 0 ) ) |
26 |
24 25
|
fveq12d |
|- ( a = 0 -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` 0 ) ) ) |
27 |
|
1ex |
|- 1 e. _V |
28 |
27
|
tpid2 |
|- 1 e. { 0 , 1 , 2 } |
29 |
28 18
|
eleqtrri |
|- 1 e. ( 0 ..^ 3 ) |
30 |
|
eleq1 |
|- ( a = 1 -> ( a e. ( 0 ..^ 3 ) <-> 1 e. ( 0 ..^ 3 ) ) ) |
31 |
29 30
|
mpbiri |
|- ( a = 1 -> a e. ( 0 ..^ 3 ) ) |
32 |
31 23
|
syl |
|- ( a = 1 -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
33 |
|
fveq2 |
|- ( a = 1 -> ( n ` a ) = ( n ` 1 ) ) |
34 |
32 33
|
fveq12d |
|- ( a = 1 -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` 1 ) ) ) |
35 |
|
2ex |
|- 2 e. _V |
36 |
35
|
tpid3 |
|- 2 e. { 0 , 1 , 2 } |
37 |
36 18
|
eleqtrri |
|- 2 e. ( 0 ..^ 3 ) |
38 |
|
eleq1 |
|- ( a = 2 -> ( a e. ( 0 ..^ 3 ) <-> 2 e. ( 0 ..^ 3 ) ) ) |
39 |
37 38
|
mpbiri |
|- ( a = 2 -> a e. ( 0 ..^ 3 ) ) |
40 |
39 23
|
syl |
|- ( a = 2 -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
41 |
|
fveq2 |
|- ( a = 2 -> ( n ` a ) = ( n ` 2 ) ) |
42 |
40 41
|
fveq12d |
|- ( a = 2 -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` 2 ) ) ) |
43 |
23
|
fveq1d |
|- ( a e. ( 0 ..^ 3 ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` a ) ) ) |
44 |
43
|
adantl |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( Lam ` ( n ` a ) ) ) |
45 |
7
|
a1i |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> Lam : NN --> CC ) |
46 |
|
ssidd |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> NN C_ NN ) |
47 |
1
|
nn0zd |
|- ( ph -> N e. ZZ ) |
48 |
47
|
adantr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> N e. ZZ ) |
49 |
2
|
nnnn0i |
|- 3 e. NN0 |
50 |
49
|
a1i |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> 3 e. NN0 ) |
51 |
|
simpr |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n e. ( NN ( repr ` 3 ) N ) ) |
52 |
46 48 50 51
|
reprf |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> n : ( 0 ..^ 3 ) --> NN ) |
53 |
52
|
ffvelrnda |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( n ` a ) e. NN ) |
54 |
45 53
|
ffvelrnd |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( Lam ` ( n ` a ) ) e. CC ) |
55 |
44 54
|
eqeltrd |
|- ( ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) e. CC ) |
56 |
26 34 42 55
|
prodfzo03 |
|- ( ( ph /\ n e. ( NN ( repr ` 3 ) N ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) |
57 |
56
|
sumeq2dv |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) prod_ a e. ( 0 ..^ 3 ) ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) ` ( n ` a ) ) = sum_ n e. ( NN ( repr ` 3 ) N ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) ) |
58 |
23
|
adantl |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) = Lam ) |
59 |
58
|
oveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) = ( Lam vts N ) ) |
60 |
59
|
fveq1d |
|- ( ( ( ph /\ x e. ( 0 (,) 1 ) ) /\ a e. ( 0 ..^ 3 ) ) -> ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) = ( ( Lam vts N ) ` x ) ) |
61 |
60
|
prodeq2dv |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) = prod_ a e. ( 0 ..^ 3 ) ( ( Lam vts N ) ` x ) ) |
62 |
|
fzofi |
|- ( 0 ..^ 3 ) e. Fin |
63 |
62
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( 0 ..^ 3 ) e. Fin ) |
64 |
1
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> N e. NN0 ) |
65 |
|
ioossre |
|- ( 0 (,) 1 ) C_ RR |
66 |
65 5
|
sstri |
|- ( 0 (,) 1 ) C_ CC |
67 |
66
|
a1i |
|- ( ph -> ( 0 (,) 1 ) C_ CC ) |
68 |
67
|
sselda |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> x e. CC ) |
69 |
7
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> Lam : NN --> CC ) |
70 |
64 68 69
|
vtscl |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( Lam vts N ) ` x ) e. CC ) |
71 |
|
fprodconst |
|- ( ( ( 0 ..^ 3 ) e. Fin /\ ( ( Lam vts N ) ` x ) e. CC ) -> prod_ a e. ( 0 ..^ 3 ) ( ( Lam vts N ) ` x ) = ( ( ( Lam vts N ) ` x ) ^ ( # ` ( 0 ..^ 3 ) ) ) ) |
72 |
63 70 71
|
syl2anc |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( Lam vts N ) ` x ) = ( ( ( Lam vts N ) ` x ) ^ ( # ` ( 0 ..^ 3 ) ) ) ) |
73 |
|
hashfzo0 |
|- ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
74 |
49 73
|
ax-mp |
|- ( # ` ( 0 ..^ 3 ) ) = 3 |
75 |
74
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
76 |
75
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( ( ( Lam vts N ) ` x ) ^ ( # ` ( 0 ..^ 3 ) ) ) = ( ( ( Lam vts N ) ` x ) ^ 3 ) ) |
77 |
61 72 76
|
3eqtrd |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) = ( ( ( Lam vts N ) ` x ) ^ 3 ) ) |
78 |
77
|
oveq1d |
|- ( ( ph /\ x e. ( 0 (,) 1 ) ) -> ( prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) = ( ( ( ( Lam vts N ) ` x ) ^ 3 ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) ) |
79 |
78
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) 1 ) ( prod_ a e. ( 0 ..^ 3 ) ( ( ( ( ( 0 ..^ 3 ) X. { Lam } ) ` a ) vts N ) ` x ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x = S. ( 0 (,) 1 ) ( ( ( ( Lam vts N ) ` x ) ^ 3 ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |
80 |
15 57 79
|
3eqtr3d |
|- ( ph -> sum_ n e. ( NN ( repr ` 3 ) N ) ( ( Lam ` ( n ` 0 ) ) x. ( ( Lam ` ( n ` 1 ) ) x. ( Lam ` ( n ` 2 ) ) ) ) = S. ( 0 (,) 1 ) ( ( ( ( Lam vts N ) ` x ) ^ 3 ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( -u N x. x ) ) ) ) _d x ) |