Metamath Proof Explorer


Theorem cjaddd

Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of Gleason p. 133. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1
|- ( ph -> A e. CC )
readdd.2
|- ( ph -> B e. CC )
Assertion cjaddd
|- ( ph -> ( * ` ( A + B ) ) = ( ( * ` A ) + ( * ` B ) ) )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 readdd.2
 |-  ( ph -> B e. CC )
3 cjadd
 |-  ( ( A e. CC /\ B e. CC ) -> ( * ` ( A + B ) ) = ( ( * ` A ) + ( * ` B ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( * ` ( A + B ) ) = ( ( * ` A ) + ( * ` B ) ) )