Metamath Proof Explorer


Theorem cjcli

Description: Closure law for complex conjugate. (Contributed by NM, 11-May-1999)

Ref Expression
Hypothesis recl.1
|- A e. CC
Assertion cjcli
|- ( * ` A ) e. CC

Proof

Step Hyp Ref Expression
1 recl.1
 |-  A e. CC
2 cjcl
 |-  ( A e. CC -> ( * ` A ) e. CC )
3 1 2 ax-mp
 |-  ( * ` A ) e. CC