| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjf |
|- * : CC --> CC |
| 2 |
|
cjcl |
|- ( z e. CC -> ( * ` z ) e. CC ) |
| 3 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
| 4 |
|
subcl |
|- ( ( ( * ` z ) e. CC /\ ( * ` A ) e. CC ) -> ( ( * ` z ) - ( * ` A ) ) e. CC ) |
| 5 |
2 3 4
|
syl2an |
|- ( ( z e. CC /\ A e. CC ) -> ( ( * ` z ) - ( * ` A ) ) e. CC ) |
| 6 |
5
|
abscld |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) e. RR ) |
| 7 |
|
cjsub |
|- ( ( z e. CC /\ A e. CC ) -> ( * ` ( z - A ) ) = ( ( * ` z ) - ( * ` A ) ) ) |
| 8 |
7
|
fveq2d |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( * ` ( z - A ) ) ) = ( abs ` ( ( * ` z ) - ( * ` A ) ) ) ) |
| 9 |
|
subcl |
|- ( ( z e. CC /\ A e. CC ) -> ( z - A ) e. CC ) |
| 10 |
9
|
abscjd |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( * ` ( z - A ) ) ) = ( abs ` ( z - A ) ) ) |
| 11 |
8 10
|
eqtr3d |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) = ( abs ` ( z - A ) ) ) |
| 12 |
6 11
|
eqled |
|- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 13 |
1 12
|
cn1lem |
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) < x ) ) |