Step |
Hyp |
Ref |
Expression |
1 |
|
divcl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) e. CC ) |
2 |
|
cjcl |
|- ( ( A / B ) e. CC -> ( * ` ( A / B ) ) e. CC ) |
3 |
1 2
|
syl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` ( A / B ) ) e. CC ) |
4 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
5 |
|
cjcl |
|- ( B e. CC -> ( * ` B ) e. CC ) |
6 |
4 5
|
syl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` B ) e. CC ) |
7 |
|
simp3 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B =/= 0 ) |
8 |
|
cjne0 |
|- ( B e. CC -> ( B =/= 0 <-> ( * ` B ) =/= 0 ) ) |
9 |
4 8
|
syl |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B =/= 0 <-> ( * ` B ) =/= 0 ) ) |
10 |
7 9
|
mpbid |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` B ) =/= 0 ) |
11 |
3 6 10
|
divcan4d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( ( * ` ( A / B ) ) x. ( * ` B ) ) / ( * ` B ) ) = ( * ` ( A / B ) ) ) |
12 |
|
cjmul |
|- ( ( ( A / B ) e. CC /\ B e. CC ) -> ( * ` ( ( A / B ) x. B ) ) = ( ( * ` ( A / B ) ) x. ( * ` B ) ) ) |
13 |
1 4 12
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` ( ( A / B ) x. B ) ) = ( ( * ` ( A / B ) ) x. ( * ` B ) ) ) |
14 |
|
divcan1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) x. B ) = A ) |
15 |
14
|
fveq2d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` ( ( A / B ) x. B ) ) = ( * ` A ) ) |
16 |
13 15
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( * ` ( A / B ) ) x. ( * ` B ) ) = ( * ` A ) ) |
17 |
16
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( ( * ` ( A / B ) ) x. ( * ` B ) ) / ( * ` B ) ) = ( ( * ` A ) / ( * ` B ) ) ) |
18 |
11 17
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` ( A / B ) ) = ( ( * ` A ) / ( * ` B ) ) ) |