Description: Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recld.1 | |- ( ph -> A e. CC ) |
|
readdd.2 | |- ( ph -> B e. CC ) |
||
cjdivd.2 | |- ( ph -> B =/= 0 ) |
||
Assertion | cjdivd | |- ( ph -> ( * ` ( A / B ) ) = ( ( * ` A ) / ( * ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | |- ( ph -> A e. CC ) |
|
2 | readdd.2 | |- ( ph -> B e. CC ) |
|
3 | cjdivd.2 | |- ( ph -> B =/= 0 ) |
|
4 | cjdiv | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` ( A / B ) ) = ( ( * ` A ) / ( * ` B ) ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( * ` ( A / B ) ) = ( ( * ` A ) / ( * ` B ) ) ) |