Metamath Proof Explorer


Theorem cjdivd

Description: Complex conjugate distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1
|- ( ph -> A e. CC )
readdd.2
|- ( ph -> B e. CC )
cjdivd.2
|- ( ph -> B =/= 0 )
Assertion cjdivd
|- ( ph -> ( * ` ( A / B ) ) = ( ( * ` A ) / ( * ` B ) ) )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 readdd.2
 |-  ( ph -> B e. CC )
3 cjdivd.2
 |-  ( ph -> B =/= 0 )
4 cjdiv
 |-  ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( * ` ( A / B ) ) = ( ( * ` A ) / ( * ` B ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( * ` ( A / B ) ) = ( ( * ` A ) / ( * ` B ) ) )