Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
2 |
1
|
fveq2d |
|- ( j = 0 -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ 0 ) ) ) |
3 |
|
oveq2 |
|- ( j = 0 -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ 0 ) ) |
4 |
2 3
|
eqeq12d |
|- ( j = 0 -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ 0 ) ) = ( ( * ` A ) ^ 0 ) ) ) |
5 |
|
oveq2 |
|- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
6 |
5
|
fveq2d |
|- ( j = k -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ k ) ) ) |
7 |
|
oveq2 |
|- ( j = k -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ k ) ) |
8 |
6 7
|
eqeq12d |
|- ( j = k -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) ) |
9 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
10 |
9
|
fveq2d |
|- ( j = ( k + 1 ) -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ ( k + 1 ) ) ) ) |
11 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
12 |
10 11
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) ) |
13 |
|
oveq2 |
|- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
14 |
13
|
fveq2d |
|- ( j = N -> ( * ` ( A ^ j ) ) = ( * ` ( A ^ N ) ) ) |
15 |
|
oveq2 |
|- ( j = N -> ( ( * ` A ) ^ j ) = ( ( * ` A ) ^ N ) ) |
16 |
14 15
|
eqeq12d |
|- ( j = N -> ( ( * ` ( A ^ j ) ) = ( ( * ` A ) ^ j ) <-> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) ) ) |
17 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
18 |
17
|
fveq2d |
|- ( A e. CC -> ( * ` ( A ^ 0 ) ) = ( * ` 1 ) ) |
19 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
20 |
|
exp0 |
|- ( ( * ` A ) e. CC -> ( ( * ` A ) ^ 0 ) = 1 ) |
21 |
|
1re |
|- 1 e. RR |
22 |
|
cjre |
|- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
23 |
21 22
|
ax-mp |
|- ( * ` 1 ) = 1 |
24 |
20 23
|
eqtr4di |
|- ( ( * ` A ) e. CC -> ( ( * ` A ) ^ 0 ) = ( * ` 1 ) ) |
25 |
19 24
|
syl |
|- ( A e. CC -> ( ( * ` A ) ^ 0 ) = ( * ` 1 ) ) |
26 |
18 25
|
eqtr4d |
|- ( A e. CC -> ( * ` ( A ^ 0 ) ) = ( ( * ` A ) ^ 0 ) ) |
27 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
28 |
27
|
fveq2d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( * ` ( ( A ^ k ) x. A ) ) ) |
29 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
30 |
|
simpl |
|- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
31 |
|
cjmul |
|- ( ( ( A ^ k ) e. CC /\ A e. CC ) -> ( * ` ( ( A ^ k ) x. A ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
32 |
29 30 31
|
syl2anc |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( ( A ^ k ) x. A ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
33 |
28 32
|
eqtrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
34 |
33
|
adantr |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) ) |
35 |
|
oveq1 |
|- ( ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) -> ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) |
36 |
|
expp1 |
|- ( ( ( * ` A ) e. CC /\ k e. NN0 ) -> ( ( * ` A ) ^ ( k + 1 ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) |
37 |
19 36
|
sylan |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( * ` A ) ^ ( k + 1 ) ) = ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) ) |
38 |
37
|
eqcomd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( ( * ` A ) ^ k ) x. ( * ` A ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
39 |
35 38
|
sylan9eqr |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( ( * ` ( A ^ k ) ) x. ( * ` A ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
40 |
34 39
|
eqtrd |
|- ( ( ( A e. CC /\ k e. NN0 ) /\ ( * ` ( A ^ k ) ) = ( ( * ` A ) ^ k ) ) -> ( * ` ( A ^ ( k + 1 ) ) ) = ( ( * ` A ) ^ ( k + 1 ) ) ) |
41 |
4 8 12 16 26 40
|
nn0indd |
|- ( ( A e. CC /\ N e. NN0 ) -> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) ) |