Metamath Proof Explorer


Theorem cjexpd

Description: Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1
|- ( ph -> A e. CC )
cjexpd.2
|- ( ph -> N e. NN0 )
Assertion cjexpd
|- ( ph -> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 cjexpd.2
 |-  ( ph -> N e. NN0 )
3 cjexp
 |-  ( ( A e. CC /\ N e. NN0 ) -> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( * ` ( A ^ N ) ) = ( ( * ` A ) ^ N ) )