Metamath Proof Explorer


Theorem cji

Description: The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005)

Ref Expression
Assertion cji
|- ( * ` _i ) = -u _i

Proof

Step Hyp Ref Expression
1 rei
 |-  ( Re ` _i ) = 0
2 imi
 |-  ( Im ` _i ) = 1
3 2 oveq2i
 |-  ( _i x. ( Im ` _i ) ) = ( _i x. 1 )
4 ax-icn
 |-  _i e. CC
5 4 mulid1i
 |-  ( _i x. 1 ) = _i
6 3 5 eqtri
 |-  ( _i x. ( Im ` _i ) ) = _i
7 1 6 oveq12i
 |-  ( ( Re ` _i ) - ( _i x. ( Im ` _i ) ) ) = ( 0 - _i )
8 remim
 |-  ( _i e. CC -> ( * ` _i ) = ( ( Re ` _i ) - ( _i x. ( Im ` _i ) ) ) )
9 4 8 ax-mp
 |-  ( * ` _i ) = ( ( Re ` _i ) - ( _i x. ( Im ` _i ) ) )
10 df-neg
 |-  -u _i = ( 0 - _i )
11 7 9 10 3eqtr4i
 |-  ( * ` _i ) = -u _i