Description: The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | cji | |- ( * ` _i ) = -u _i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rei | |- ( Re ` _i ) = 0 |
|
2 | imi | |- ( Im ` _i ) = 1 |
|
3 | 2 | oveq2i | |- ( _i x. ( Im ` _i ) ) = ( _i x. 1 ) |
4 | ax-icn | |- _i e. CC |
|
5 | 4 | mulid1i | |- ( _i x. 1 ) = _i |
6 | 3 5 | eqtri | |- ( _i x. ( Im ` _i ) ) = _i |
7 | 1 6 | oveq12i | |- ( ( Re ` _i ) - ( _i x. ( Im ` _i ) ) ) = ( 0 - _i ) |
8 | remim | |- ( _i e. CC -> ( * ` _i ) = ( ( Re ` _i ) - ( _i x. ( Im ` _i ) ) ) ) |
|
9 | 4 8 | ax-mp | |- ( * ` _i ) = ( ( Re ` _i ) - ( _i x. ( Im ` _i ) ) ) |
10 | df-neg | |- -u _i = ( 0 - _i ) |
|
11 | 7 9 10 | 3eqtr4i | |- ( * ` _i ) = -u _i |