Metamath Proof Explorer


Theorem cjmulrcld

Description: A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1
|- ( ph -> A e. CC )
Assertion cjmulrcld
|- ( ph -> ( A x. ( * ` A ) ) e. RR )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 cjmulrcl
 |-  ( A e. CC -> ( A x. ( * ` A ) ) e. RR )
3 1 2 syl
 |-  ( ph -> ( A x. ( * ` A ) ) e. RR )