Metamath Proof Explorer


Theorem cjmulvald

Description: A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis recld.1
|- ( ph -> A e. CC )
Assertion cjmulvald
|- ( ph -> ( A x. ( * ` A ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 cjmulval
 |-  ( A e. CC -> ( A x. ( * ` A ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )
3 1 2 syl
 |-  ( ph -> ( A x. ( * ` A ) ) = ( ( ( Re ` A ) ^ 2 ) + ( ( Im ` A ) ^ 2 ) ) )