Metamath Proof Explorer


Theorem cjnegi

Description: Complex conjugate of negative. (Contributed by NM, 2-Aug-1999)

Ref Expression
Hypothesis recl.1
|- A e. CC
Assertion cjnegi
|- ( * ` -u A ) = -u ( * ` A )

Proof

Step Hyp Ref Expression
1 recl.1
 |-  A e. CC
2 cjneg
 |-  ( A e. CC -> ( * ` -u A ) = -u ( * ` A ) )
3 1 2 ax-mp
 |-  ( * ` -u A ) = -u ( * ` A )