Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
recn |
|- ( B e. RR -> B e. CC ) |
4 |
|
mulcl |
|- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
5 |
2 3 4
|
sylancr |
|- ( B e. RR -> ( _i x. B ) e. CC ) |
6 |
|
cjadd |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( * ` ( A + ( _i x. B ) ) ) = ( ( * ` A ) + ( * ` ( _i x. B ) ) ) ) |
7 |
1 5 6
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( ( * ` A ) + ( * ` ( _i x. B ) ) ) ) |
8 |
|
cjre |
|- ( A e. RR -> ( * ` A ) = A ) |
9 |
|
cjmul |
|- ( ( _i e. CC /\ B e. CC ) -> ( * ` ( _i x. B ) ) = ( ( * ` _i ) x. ( * ` B ) ) ) |
10 |
2 3 9
|
sylancr |
|- ( B e. RR -> ( * ` ( _i x. B ) ) = ( ( * ` _i ) x. ( * ` B ) ) ) |
11 |
|
cji |
|- ( * ` _i ) = -u _i |
12 |
11
|
a1i |
|- ( B e. RR -> ( * ` _i ) = -u _i ) |
13 |
|
cjre |
|- ( B e. RR -> ( * ` B ) = B ) |
14 |
12 13
|
oveq12d |
|- ( B e. RR -> ( ( * ` _i ) x. ( * ` B ) ) = ( -u _i x. B ) ) |
15 |
|
mulneg1 |
|- ( ( _i e. CC /\ B e. CC ) -> ( -u _i x. B ) = -u ( _i x. B ) ) |
16 |
2 3 15
|
sylancr |
|- ( B e. RR -> ( -u _i x. B ) = -u ( _i x. B ) ) |
17 |
10 14 16
|
3eqtrd |
|- ( B e. RR -> ( * ` ( _i x. B ) ) = -u ( _i x. B ) ) |
18 |
8 17
|
oveqan12d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( * ` A ) + ( * ` ( _i x. B ) ) ) = ( A + -u ( _i x. B ) ) ) |
19 |
|
negsub |
|- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + -u ( _i x. B ) ) = ( A - ( _i x. B ) ) ) |
20 |
1 5 19
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + -u ( _i x. B ) ) = ( A - ( _i x. B ) ) ) |
21 |
7 18 20
|
3eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( A - ( _i x. B ) ) ) |