| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cjreim |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( A - ( _i x. B ) ) ) |
| 2 |
1
|
fveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( * ` ( A - ( _i x. B ) ) ) ) |
| 3 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 4 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
| 5 |
|
ax-icn |
|- _i e. CC |
| 6 |
5
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> _i e. CC ) |
| 7 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
| 9 |
6 8
|
mulcld |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. B ) e. CC ) |
| 10 |
4 9
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
| 11 |
|
cjcj |
|- ( ( A + ( _i x. B ) ) e. CC -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( A + ( _i x. B ) ) ) |
| 12 |
10 11
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( A + ( _i x. B ) ) ) |
| 13 |
2 12
|
eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A - ( _i x. B ) ) ) = ( A + ( _i x. B ) ) ) |