Step |
Hyp |
Ref |
Expression |
1 |
|
cjreim |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( A - ( _i x. B ) ) ) |
2 |
1
|
fveq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( * ` ( A - ( _i x. B ) ) ) ) |
3 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
4 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> A e. CC ) |
5 |
|
ax-icn |
|- _i e. CC |
6 |
5
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> _i e. CC ) |
7 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR ) -> B e. CC ) |
9 |
6 8
|
mulcld |
|- ( ( A e. RR /\ B e. RR ) -> ( _i x. B ) e. CC ) |
10 |
4 9
|
addcld |
|- ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) |
11 |
|
cjcj |
|- ( ( A + ( _i x. B ) ) e. CC -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( A + ( _i x. B ) ) ) |
12 |
10 11
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( * ` ( A + ( _i x. B ) ) ) ) = ( A + ( _i x. B ) ) ) |
13 |
2 12
|
eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A - ( _i x. B ) ) ) = ( A + ( _i x. B ) ) ) |