Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
2 |
|
cjadd |
|- ( ( A e. CC /\ -u B e. CC ) -> ( * ` ( A + -u B ) ) = ( ( * ` A ) + ( * ` -u B ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A + -u B ) ) = ( ( * ` A ) + ( * ` -u B ) ) ) |
4 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
5 |
4
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A + -u B ) ) = ( * ` ( A - B ) ) ) |
6 |
|
cjneg |
|- ( B e. CC -> ( * ` -u B ) = -u ( * ` B ) ) |
7 |
6
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` -u B ) = -u ( * ` B ) ) |
8 |
7
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) + ( * ` -u B ) ) = ( ( * ` A ) + -u ( * ` B ) ) ) |
9 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
10 |
|
cjcl |
|- ( B e. CC -> ( * ` B ) e. CC ) |
11 |
|
negsub |
|- ( ( ( * ` A ) e. CC /\ ( * ` B ) e. CC ) -> ( ( * ` A ) + -u ( * ` B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
12 |
9 10 11
|
syl2an |
|- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) + -u ( * ` B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
13 |
8 12
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( * ` A ) + ( * ` -u B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |
14 |
3 5 13
|
3eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A - B ) ) = ( ( * ` A ) - ( * ` B ) ) ) |