| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cju |
|- ( A e. CC -> E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 2 |
|
riotasbc |
|- ( E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 3 |
1 2
|
syl |
|- ( A e. CC -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 4 |
|
cjval |
|- ( A e. CC -> ( * ` A ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 5 |
4
|
sbceq1d |
|- ( A e. CC -> ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 6 |
3 5
|
mpbird |
|- ( A e. CC -> [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 7 |
|
fvex |
|- ( * ` A ) e. _V |
| 8 |
|
oveq2 |
|- ( x = ( * ` A ) -> ( A + x ) = ( A + ( * ` A ) ) ) |
| 9 |
8
|
eleq1d |
|- ( x = ( * ` A ) -> ( ( A + x ) e. RR <-> ( A + ( * ` A ) ) e. RR ) ) |
| 10 |
|
oveq2 |
|- ( x = ( * ` A ) -> ( A - x ) = ( A - ( * ` A ) ) ) |
| 11 |
10
|
oveq2d |
|- ( x = ( * ` A ) -> ( _i x. ( A - x ) ) = ( _i x. ( A - ( * ` A ) ) ) ) |
| 12 |
11
|
eleq1d |
|- ( x = ( * ` A ) -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |
| 13 |
9 12
|
anbi12d |
|- ( x = ( * ` A ) -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) ) |
| 14 |
7 13
|
sbcie |
|- ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |
| 15 |
6 14
|
sylib |
|- ( A e. CC -> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |