Metamath Proof Explorer


Theorem cjth

Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion cjth
|- ( A e. CC -> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) )

Proof

Step Hyp Ref Expression
1 cju
 |-  ( A e. CC -> E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) )
2 riotasbc
 |-  ( E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) )
3 1 2 syl
 |-  ( A e. CC -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) )
4 cjval
 |-  ( A e. CC -> ( * ` A ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) )
5 4 sbceq1d
 |-  ( A e. CC -> ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) )
6 3 5 mpbird
 |-  ( A e. CC -> [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) )
7 fvex
 |-  ( * ` A ) e. _V
8 oveq2
 |-  ( x = ( * ` A ) -> ( A + x ) = ( A + ( * ` A ) ) )
9 8 eleq1d
 |-  ( x = ( * ` A ) -> ( ( A + x ) e. RR <-> ( A + ( * ` A ) ) e. RR ) )
10 oveq2
 |-  ( x = ( * ` A ) -> ( A - x ) = ( A - ( * ` A ) ) )
11 10 oveq2d
 |-  ( x = ( * ` A ) -> ( _i x. ( A - x ) ) = ( _i x. ( A - ( * ` A ) ) ) )
12 11 eleq1d
 |-  ( x = ( * ` A ) -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( A - ( * ` A ) ) ) e. RR ) )
13 9 12 anbi12d
 |-  ( x = ( * ` A ) -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) )
14 7 13 sbcie
 |-  ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) )
15 6 14 sylib
 |-  ( A e. CC -> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) )