| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( y = A -> ( y + x ) = ( A + x ) ) |
| 2 |
1
|
eleq1d |
|- ( y = A -> ( ( y + x ) e. RR <-> ( A + x ) e. RR ) ) |
| 3 |
|
oveq1 |
|- ( y = A -> ( y - x ) = ( A - x ) ) |
| 4 |
3
|
oveq2d |
|- ( y = A -> ( _i x. ( y - x ) ) = ( _i x. ( A - x ) ) ) |
| 5 |
4
|
eleq1d |
|- ( y = A -> ( ( _i x. ( y - x ) ) e. RR <-> ( _i x. ( A - x ) ) e. RR ) ) |
| 6 |
2 5
|
anbi12d |
|- ( y = A -> ( ( ( y + x ) e. RR /\ ( _i x. ( y - x ) ) e. RR ) <-> ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 7 |
6
|
riotabidv |
|- ( y = A -> ( iota_ x e. CC ( ( y + x ) e. RR /\ ( _i x. ( y - x ) ) e. RR ) ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 8 |
|
df-cj |
|- * = ( y e. CC |-> ( iota_ x e. CC ( ( y + x ) e. RR /\ ( _i x. ( y - x ) ) e. RR ) ) ) |
| 9 |
|
riotaex |
|- ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) e. _V |
| 10 |
7 8 9
|
fvmpt |
|- ( A e. CC -> ( * ` A ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |