Description: Writing a set as a class abstraction. This theorem looks artificial but was added to characterize the class abstraction whose existence is proved in class2set . (Contributed by NM, 13-Dec-2005) (Proof shortened by Raph Levien, 30-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | class2seteq | |- ( A e. V -> { x e. A | A e. _V } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. V -> A e. _V ) |
|
| 2 | ax-1 | |- ( A e. _V -> ( x e. A -> A e. _V ) ) |
|
| 3 | 2 | ralrimiv | |- ( A e. _V -> A. x e. A A e. _V ) |
| 4 | rabid2im | |- ( A. x e. A A e. _V -> A = { x e. A | A e. _V } ) |
|
| 5 | 4 | eqcomd | |- ( A. x e. A A e. _V -> { x e. A | A e. _V } = A ) |
| 6 | 1 3 5 | 3syl | |- ( A e. V -> { x e. A | A e. _V } = A ) |