| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clatglbcl.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							clatglbcl.g | 
							 |-  G = ( glb ` K )  | 
						
						
							| 3 | 
							
								1
							 | 
							fvexi | 
							 |-  B e. _V  | 
						
						
							| 4 | 
							
								3
							 | 
							elpw2 | 
							 |-  ( S e. ~P B <-> S C_ B )  | 
						
						
							| 5 | 
							
								4
							 | 
							biimpri | 
							 |-  ( S C_ B -> S e. ~P B )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							 |-  ( ( K e. CLat /\ S C_ B ) -> S e. ~P B )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( lub ` K ) = ( lub ` K )  | 
						
						
							| 8 | 
							
								1 7 2
							 | 
							isclat | 
							 |-  ( K e. CLat <-> ( K e. Poset /\ ( dom ( lub ` K ) = ~P B /\ dom G = ~P B ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprr | 
							 |-  ( ( K e. Poset /\ ( dom ( lub ` K ) = ~P B /\ dom G = ~P B ) ) -> dom G = ~P B )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylbi | 
							 |-  ( K e. CLat -> dom G = ~P B )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( K e. CLat /\ S C_ B ) -> dom G = ~P B )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							eleqtrrd | 
							 |-  ( ( K e. CLat /\ S C_ B ) -> S e. dom G )  |