Metamath Proof Explorer


Theorem clatglble

Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses clatglb.b
|- B = ( Base ` K )
clatglb.l
|- .<_ = ( le ` K )
clatglb.g
|- G = ( glb ` K )
Assertion clatglble
|- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( G ` S ) .<_ X )

Proof

Step Hyp Ref Expression
1 clatglb.b
 |-  B = ( Base ` K )
2 clatglb.l
 |-  .<_ = ( le ` K )
3 clatglb.g
 |-  G = ( glb ` K )
4 simp1
 |-  ( ( K e. CLat /\ S C_ B /\ X e. S ) -> K e. CLat )
5 1 3 clatglbcl2
 |-  ( ( K e. CLat /\ S C_ B ) -> S e. dom G )
6 5 3adant3
 |-  ( ( K e. CLat /\ S C_ B /\ X e. S ) -> S e. dom G )
7 simp3
 |-  ( ( K e. CLat /\ S C_ B /\ X e. S ) -> X e. S )
8 1 2 3 4 6 7 glble
 |-  ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( G ` S ) .<_ X )