Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clatglb.b | |- B = ( Base ` K ) |
|
clatglb.l | |- .<_ = ( le ` K ) |
||
clatglb.g | |- G = ( glb ` K ) |
||
Assertion | clatglble | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( G ` S ) .<_ X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglb.b | |- B = ( Base ` K ) |
|
2 | clatglb.l | |- .<_ = ( le ` K ) |
|
3 | clatglb.g | |- G = ( glb ` K ) |
|
4 | simp1 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> K e. CLat ) |
|
5 | 1 3 | clatglbcl2 | |- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |
6 | 5 | 3adant3 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> S e. dom G ) |
7 | simp3 | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> X e. S ) |
|
8 | 1 2 3 4 6 7 | glble | |- ( ( K e. CLat /\ S C_ B /\ X e. S ) -> ( G ` S ) .<_ X ) |